首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A polycarbosilane (PCS) with a higher number–average molecular weight (2710 vs. 1570), and hence with a higher ceramic yield (74 vs. 68%), compared to a commercial Nipusi type S PCS has been synthesized via the catalytic decomposition of polydimethylsilane at 400 °C using H‐ITQ‐2, a delaminated zeolite with a very high external surface area, as a solid acid. The silicon carbide film fabricated using this PCS was found to show a much lower level (16 vs. 39%) of shrinkage than the commercial PCS‐derived film, together with better mechanical properties, suggesting the potential of its preceramic polymer to produce robust ceramic coatings. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 725–732, 2008  相似文献   

2.
The synthesis of polyaluminocarbosilane (PACS) using liquid polysilacarbosilane (PSCS) and aluminum acetylacetonate [Al (acac)3] by a high‐pressure method is reported for the first time. The effects of reaction time, temperature and feed ratio on the structure of PACS are investigated in detail by gel permeation chromatography, Fourier transform‐infrared, 1H‐NMR, 29Si‐NMR and 27Al‐NMR methods. It was found that the molecular weight and its polydispersity, as well as the branching degree of the molecular structure of PACS, increase with reaction time and temperature. Increasing the weight percentage of Al (acac)3 has a similar effect as temperature. Combined with the gas chromatography–mass spectroscopy results, the reaction mechanism is proposed, which contains three main reactions: (i) cleavage and rearrangement reaction of PSCS; (ii) silicon‐free radicals react with Al (acac)3, leading to cleavage of O=C and/or O‐C bonds and formation of AlOx ligands; and (iii) conversion reaction of Al ligands from AlO6 into AlO5 and AlO4. It is also found that PACS prepared by high‐pressure method has a lower branched molecular structure in comparison to its analog prepared under ambient pressure conditions, and it is achieved to increase the molecular weight and ceramic yield of PACS, which is beneficial for the processing and overall quality of the final product.  相似文献   

3.
Four D–A–D type co‐oligomers have been synthesized by Stille condensation between monostannyl derivatives of furan/thiophene/selenophene/3,4‐ethylenedioxythiophene (EDOT) and 4,7‐dibromo‐benzo[1,2,5]oxadiazole. All these co‐oligomers were successfully electrochemically polymerized in dichloromethane and characterized by spectroelectrochemistry. All four polymers possess narrow optical band gap. Spectroelectrochemical studies of polymer films on indium tin oxide revealed that the replacement of donor EDOT with furan/thiophene/selenophene has affected the low‐energy charge‐carrier (bipolaron) formation significantly. Kinetic studies based on chronoamperometry show that the polymer P5 (EDOT‐capped benzo[1,2,5]oxadiazole system) possess better electrochromic property with high transmittance (66%) in visible region than the other copolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
PPV‐based copolymers containing phenothiazine‐5‐oxide and phenothiazine‐5, 5‐dioxide moieties have been successfully synthesized by Wittig‐Horner reaction and characterized by means of UV‐vis, photoluminescence, electroluminescence spectra, and cyclic voltammetry. All of these copolymers can be dissolved in common organic solvents such as chloroform, tetrahydrofuran, and toluene. The PL maxima in the film state are located at 582, 556, and 552 nm for P1, P2, and P3, respectively. The HOMO and LUMO levels of P2 are found to be ?5.21 and ?2.68 eV, respectively; whereas those of P3 are found to be ?5.26 and ?2.71 eV, respectively. The cyclic voltammetry result indicates that the conversion of electron‐donating sulfide to electron‐withdrawing sulfoxide or sulfone group in polymers plays a dominating role in increasing its oxidation potential. Yellowish‐green light ranging from 568 to 540 nm was observed for the single layer device with the configuration of ITO/Polymer/Ca/Al. Double layer devices with Zn (BTZ)2 as a hole blocking layer exhibited enhanced EL performance compared to the single layer devices. The maximum brightness of the double layer devices of P1, P2, and P3 is 278, 400, and 796 cd/m2, respectively. The results of EL and electrochemical analyses revealed that they are promising candidate materials for organic, light‐emitting diodes with hole‐transporting ability. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4291–4299, 2007  相似文献   

5.
A 4‐methoxy‐substituted triphenylamine‐containing homopolymer, poly [N,N‐diphenyl‐4‐methoxyphenylamine‐4′,4′′‐diyl] ( PMeOTPA ), with blue light (435 nm) fluorescence quantum efficiency up to 79% was easily prepared by oxidative coupling polymerization of N,N‐diphenyl‐4‐methoxyphenylamine ( MeOTPA ) using FeCl3 as an oxidant. Its reversible oxidation redox couple was at 0.41 V versus Fc/Fc+ in acetonitrile solution. It exhibited good thermal stability with 10% weight‐loss temperatures above 500 °C under a nitrogen atmosphere and relatively high softening temperature (154 °C). The simply designed homopolymer revealed moderate stability of electrochromic characteristics, changing color from original pale yellowish to red, and then to black. The PMeOTPA based field effect transistor also showed p‐type characteristics with significant temperature dependence. The present study suggests that PMeOTPA is a multifunctional polymer for various optoelectronic device applications. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3292–3302, 2007  相似文献   

6.
Anion‐exchange membranes containing pendant benzimidazolium groups were synthesized from polysulfone by chrolomethylation followed by nucleophilic substitution reaction with 1‐methylbenzimidazole. The structures of the polymers were characterized by 1H‐NMR and FTIR analysis. The resulting membranes showed high thermal stability below 200 °C. The values of water uptake and swelling degree increased with the ion‐exchange capacity of the polymeric membrane. The ionic conductivity was measured by means of impedance spectroscopy in aqueous solution of potassium hydroxide (10?4?10?1 M). The results show not only a clear correlation between the membrane's electrochemical behavior with the electrolyte solution embedded in the membrane, but also with the degree of the polysulfone's chloromethylation.Thus, the ionic conductivity increased more than two orders of magnitude when the degree of chloromethylation increased from 40 to 140%. Benzimidazolium‐functionalized polysulfones exhibited better thermal, mechanical, and electrochemical properties than the widely used polymeric membranes containing quaternary ammonium groups. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2363–2373  相似文献   

7.
The formation of a poly(2,6‐carbazole) derivative during an electrochemical polymerization process is shown. Comparison of 3,5‐bis(9‐octyl‐9H‐carbazol‐2‐yl)pyridine and 3,5‐bis(9‐octyl‐9H‐carbazol‐3‐yl)pyridine by electrochemical and UV–Vis‐NIR spectroelectrochemical measurements and DFT (density functional theory) calculation prove the formation of a poly(2,6‐carbazole) derivative. Both of the compounds form stable and electroactive conjugated polymers.

  相似文献   


8.
In this work, an experimental study on the etching of p‐type hot‐pressed silicon carbide (SiC) was carried out in HF/K2S2O8 solutions. The SiC wafers used in this work were p‐type polycrystalline materials, supplied by Goodfellow, with an acceptor concentration of 2.31 × 1012 cm?3. The SiC substrate was a hot‐pressed material, the latter realized from a mixture of 1 part of SiO2 with 3 parts of C (carbon) ‘1SiO2 + 3C’ heated in an oven at 2500 °C. In order to facilitate the chemical etching of the SiC substrate, a thin aluminium film was deposited on the SiC substrate. The morphology of the etched surface was examined with varying K2S2O8 concentration. The surfaces of the etched samples were analysed using secondary ions mass spectrometry (SIMS), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT‐IR) and photoluminescence (PL). The surface morphology of the samples etched in HF/K2S2O8 is shown to depend on the solution composition. The investigation of the effect of the HF/K2S2O8 solution on SiC samples shows that as K2S2O8 concentration increases, the chemical etching reveals defects with random geometry. Finally, chemical etching of p‐type SiC induces a decrease in the PL intensity, which indicates clearly the defects on the polycrystalline SiC surface. In addition, the result is very interesting, as to date no chemical etching solution at low temperature (<100 °C) has been developed for SiC. Finally, we have proposed a dissolution mechanism of SiC in 2HF/1K2S2O8 solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Summary: Multi‐walled carbon nanotubes (MWNTs) have been successfully modified with polyacrylonitrile (PAN) by a cathodic electrochemical process. The surface‐modified MWNTs afforded are then dispersible in good solvents for PAN, such as N,N‐dimethylformamide (DMF). Collected from a dilute dispersion, these MWNTs are essentially disentangled, as confirmed by transmission electron microscopy (TEM) analysis. From the differential scanning calorimetry (DSC) traces for polyacrylonitrile and polyacrylonitrile‐grafted MWNTs, the maximum grafting ratio is estimated at 0.28.

Electrochemical grafting of polyacrylonitriles onto the surface of multi‐walled carbon nanotubes.  相似文献   


10.
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008  相似文献   

11.
A series of novel poly(amine–amide–imide)s (PAAIs) based on tetraphenyl‐p‐phenylenediamine (TPPA) units showing anodically/cathodically electrochromic characteristic with three primary colors [red, green, and blue (RGB)] were prepared from the direct polycondensation of the TPPA‐based diamine monomer with various aromatic bis(trimellitimide)s. These multicolored electrochromic polymers were readily soluble in polar organic solvents and showed excellent thermal stability associated with high glass‐transition temperatures (288–314 °C) and high‐char yield (higher than 60% at 800 °C in nitrogen). The PAAI films revealed electrochemical oxidation and reduction accompanied with high contrast of optical transmittance color changes from the pale yellow neutral state to the green/blue oxidized state and red reduced state, respectively. The electrochromic films had high‐coloration efficiency (CE = 178 and 242 cm2/C at the first and the second stages, respectively), low‐switching time, and good redox stability, which still retained a high electroactivity after long‐term redox cycles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

12.
Novel blue‐emitting germanium‐containing poly(p‐phenylenevinylene) (PPV) derivatives with well‐defined conjugation lengths were synthesized via Wittig‐condensation polymerizations. The polymers can be color‐tuned by the introduction of various chromophores into the PPV‐based polymer backbones. The photoluminescence (PL) spectra of the polymers, GePVK (containing carbazole moieties), GeMEH (containing dialkoxybenzene moieties), and GePTH (containing phenothiazine moieties), were found to exhibit blue, greenish blue, and green emissions, respectively. GePTH produces more red‐shifted emission than GeMEH and GEPVK, resulting in green emission, and the solution and solid state PL spectra of GePVK consist of almost blue emission. The electroluminescence spectra of GeMEH and GePTH contain yellowy green and yellow colors, respectively. Interestingly, GePVK exhibits white emission with CIE coordinates of (0.33, 0.37) due to electroplex emission in the light‐emitting diodes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 979–988, 2008  相似文献   

13.
14.
A new series of alkoxy‐substituted poly(p‐phenylene 1,3,4‐oxadiazole)s modified by the insertion of small percentages of various comonomers were synthesized through the precursor polyhydrazides. The comonomers used contained trans double bonds or meta‐alkoxy‐substituted aromatic rings to improve the solubility of the final polymers. The synthesized copolymers were chemically characterized by 1H NMR and Fourier transform infrared spectroscopy. In some cases, the copolymers really showed improved solubility in organic solvents. The 15N solid‐state NMR technique was applied to examine the degree of conversion from the precursor polyhydrazides to the final polymers, which determined the effective conjugated length in the target polyoxadiazoles. Thermal stability and structural characteristics of all the polymers as well as a preliminary investigation on the optical properties of polyoxadiazoles are also reported. The copolymers retained high absorbance in the UV region and high transmission in the whole telecommunication range. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3916–3928, 2003  相似文献   

15.
Redox‐active anthraquinone based polymers are synthesized by the introduction of a polymerizable vinyl and ethynyl group, respectively, resulting in redox‐active monomers, which electrochemical behaviors are tailored by the modification of the keto groups to N‐cyanoimine moieties. These monomers can be polymerized by free radical polymerization and Rh‐catalyzed polymerization methods, respectively. The resulting polymers are obtained in molar masses (Mn) of 4,400 to 16,800 g mol?1 as well as high yields of up to 97%. The monomers and polymers are furthermore electrochemically characterized by cyclic voltammetry. The monomers exhibit two one‐electron redox reactions at about ?0.6 and ?1.0 V versus Fc+/Fc. The N‐cyanoimine units are, however, partially hydrolyzed during the polymerization step or during the electrochemical measurements and degenerate to carbonyl groups, resulting in a new reduction signal at ?1.26 V versus Fc+/Fc. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1998–2003  相似文献   

16.
The synthesis, layer‐by‐layer deposition, and electro‐copolymerization of precursor polyelectrolyte multilayer ultrathin films with thiophene and carbazole electroactive groups are described. The interest is in observing an electrochemical cross‐linking approach towards a highly ordered ultrathin film that contains two types of monomers to result in possible layer‐limited homo‐ and copolymerization. A uniform linear growth with alternate deposition of the polyelectrolytes is observed. The multilayer films were then electrochemically polymerized anodically by cyclic voltammetry (CV), which results in copolymerization between two different electroactive groups. Cross‐linking of the layers was verified by CV and spectroelectrochemistry data with very good linear electro‐copolymerizability.

  相似文献   


17.
A new method toward vertically oriented poly(3,4‐ethylenedioxythiophene) (PEDOT) nanotube arrays on transparent conductive oxide substrates is presented. The approach is based on the use of ZnO nanowire arrays as templates for the electropolymerization of PEDOT. Robust arrays of vertically oriented PEDOT nanotubes with different lengths and wall thicknesses were obtained by modifying the ZnO nanowire length and charge density passed during the electropolymerization, respectively. Furthermore, PEDOT nanotubes with different morphologies (top‐closed and mushroom‐like) were successfully designed by varying the PEDOT electropolymerization kinetics or monomer diffusion or both. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
In order to produce pH‐ and voltage‐switchable superhydrophobic surfaces, PEDOT derivatives containing various proportions of a EDOT monomer containing carboxylic groups (EDOT? COOH) and EDOT monomer‐containing dodecyl chains (EDOT? O? H12) are elaborated. The surface morphology and roughness depend highly on the proportion of the monomers. Superhydrophobic properties are reached for a mol % of EDOT? COOH between 0 and 25 %. It is possible to switch from superhydrophobic to hydrophilic (θwater until about 45°) by electrochemical reduction at low voltage (?1 V vs SCE) to remove the doping anions, following by treatment with NaOH to change the carboxylic groups into carboxylate. By elaborating smooth surfaces of each polymer, the effect of each treatment is reported. The reversibility of the reactions is also reported.  相似文献   

19.
Novel ladder‐type conjugated polymers, fused poly (benzopentalene) derivatives, were synthesized from the readily accessible 1,4‐dibromo‐2,5‐diethynylbenzene derivatives by the Pd‐catalyzed self‐polycondensation in one‐step with high yields. The low solubility of the ladder structure was suggested when the triisopropylsilyl substituents were selected. However, when longer alkyl chains were introduced into the peripheral moieties, such as the dialkylanilino (DAA) and alkyloxyphenyl groups, a high solubility was achieved and the number‐average molecular weight (Mn) reached 18,000. The UV‐Vis absorption spectral shapes of the polymers were similar to the reported dibenzopentalene derivatives, except for the bathochromically shifted end absorptions. This result suggests an extension of the π‐conjugated systems due to the polymerization. Moreover, the almost defect‐free structure of the ladder‐type polymers was confirmed by the quantitative tetracyanoethylene (TCNE) addition to the DAA‐activated alkynes. The titration experiments of TCNE to the polymers revealed the number of terminal alkynes, which enabled us to calculate the molecular weight of the polymers. The calculated molecular weight was consistent with that determined by GPC. After the TCNE addition, the polymer band gaps reasonably decreased as suggested by the UV‐Vis‐NIR absorption and electrochemical measurements. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

20.
New series aromatic polyamides with (carbazol‐9‐yl)triphenylamine units were synthesized from a newly synthesized diamine monomer, 4,4′‐diamino‐4″‐(3,6‐dimethoxycarbazol‐9‐yl) triphenylamine, and aromatic dicarboxylic acids via the phosphorylation polyamidation technique. These polyamides exhibit good solubility in many organic solvents and can be solution‐cast into flexible and strong films with high thermal stability. They show well‐defined and reversible redox couples during oxidative scanning, with a strong color change from colorless neutral form to yellowish green and blue oxidized forms at applied potentials scanning from 0.0 to 1.3 V. They show enhanced redox‐stability and electrochromic performance as compared to the corresponding analogs without methoxy substituents on the active sites of the carbazole unit. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 272–286  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号