首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Based on our previous work on the sensitive and selective conjugated fluorescent polymeric sensors toward cyanide, 2,1,3‐benzothiadiazole and 4,7‐bis(thiophen‐2‐yl)‐2,1,3‐benzothiadiazole were incorporated into the polyfluorene backbone to yield three new polymers bearing imidazole moieties in the side chains, with different fluorescence color. The fluorescence could be turned off by Cu2+ ions and then recovered on addition of cyanide, making them good cyanide sensors with the detection limit down to 1.9 μM. Moreover, by fully understanding this “turn off–turn on” strategy and using the cooperation of two polymers with different fluorescence color, the emission color of the mixture system of one of the imidazole‐containing polymers and one from the corresponding polymers without imidazole ones, could be adjusted by the concentrations of the added copper and cyanide ions, leading to the output fluorescent signals diversity. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
A series of novel dysprosium coordination polymers were synthesized using new high‐Tg carboxyl‐containing polyaryletherketones (PEKs) as macromolecular ligands and a small molecule, 1,10‐phenanthroline, as co‐ligand. The FTIR, WAXD, and UV–Vis results indicated that the dysprosium ions were coordinated simultaneously with carboxyl group of PEKs and 1,10‐phenanthroline, and homogeneously distributed along the polymer backbone. These obtained dysprosium coordination polymers showed excellent film‐formation properties. Moreover, all the dysprosium coordination polymers could exhibit the intense characteristic emission of dysprosium ions under UV excitation. Meanwhile, the emission intensity increased with increasing dysprosium ion content, and no obvious fluorescence quenching happened at the Dy3+ ion content up to 10.71 wt%, which was attributed to the very rigid structure of PEK and synergistic coordination effect of PEK and 1,10‐phenanthroline. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Two polytriphenylamines (PTPAs) (P1 and P2) with aggregation induced emission (AIE)‐active tetraphenylethylene side groups have been designed and successfully synthesized. Both polymers only faintly emit in dilute solution but show strong emission in aggregated state, meaning that they are AIE‐active. The detection of 1,3,5‐trinitrobenzene (TNB) vapors has been investigated by photoluminescence (PL) quenching in polymer films. High solid state quantum yields and donor‐acceptor interactions of the electron‐rich PTPA chains with the TNB analyte, hereby, induce a high sensing sensitivity, both for P1 and P2 films towards TNB vapor. Contacting thin P1 and P2 films with saturated TNB vapor, the PL intensity was quenched by 85% for P1 and 89% for P2 within 600 s, respectively. The sensing process is reversible, >90% of the PL is recovered, also after repeated cycling. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 53, 1753–1761  相似文献   

4.
A series of novel hyperbranched polymers(HBPs) consisting of a 2,7-subsituted 9-(heptadecan-9-yl)-9H-carbazole unit(A_2+A_2') and a tetra-substituted green thermally activated delayed fluorescence(TADF) dye of 2,3,5,6-tetra(9Hcarbazol-9-yl)-4-pyridinecarbonitrile(4CzCNPy, B4) have been synthesized via Suzuki cross-coupling reaction following an "A2+A2'+B_4" method. The polymers are named according to the polymerization ratio of 4CzCNPy monomer(5 mol%, 10 mol% and 15 mol% for HBPs of P2-P4 respectively, and 0 mol% for the control linear polymer P1). Their thermal, optoelectronic and electrochemical properties have been characterized by a combination of techniques. All the polymers exhibit high thermal stability with the decomposition temperatures(Td) above 400 ℃ and glass transition temperatures(Tg) up to 98 ℃. Unfortunately, the incorporation of TADF moiety into these HBP materials induced non-TADF characteristics. However, when the HBPs functionalized as the host for our previously developed 4CzCNPy TADF dopant in solution processed devices, maximum external quantum efficiency of 5.7% and current efficiency of 17.9 cd/A have been achieved in P3-based device, which is significantly higher than those of 1.5% and 4.2 cd/A for the linear polymer P1.  相似文献   

5.
The synthesis and pH‐sensing properties of fluorescent polymer nanoparticles (NPs) in the 20 nm diameter range with a sensitive dye covalently attached to the particle surface and a reference dye entrapped within the particle core are presented. Fluorescein‐functionalized NPs were readily obtained by conjugation of fluorescein isothiocyanate (FITC) to amine‐coated crosslinked polystyrene‐based nanoparticles prepared by microemulsion polymerization followed by postfunctionalization. This all water‐based method gave access to stable aqueous suspensions of pH‐sensing fluorescent NPs. The encapsulation of the insensitive reference fluorescent dye (1,9‐diphenylanthracene, DPA) was then conveniently achieved by soaking leading to dual fluorescent NPs containing about 20 DPA and 55 fluorescein, as deduced from spectroscopic analyses. This core‐shell type architecture maximizes the interactions of the sensing dye with the medium while protecting the reference dye. The variations of the ratio of the fluorescence emission intensities of the sensitive dye (fluorescein) to the reference dye (DPA) with pH show that the dual fluorescent NPs act as a ratiometric pH sensor with a measuring range between pH 4 and pH 8. This pH nanosensor was found to be fast, fully reversible, and robust without any leaching of dye over a long period of time. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6206–6213, 2008  相似文献   

6.
7.
Zinc ion (Zn2+) is an important and a most useful biological trace nutrient responsible for the activity of several enzymes. Zn2+ concentrations in the environment as well as in the human body increase beyond permissible limits as a consequence of its mining and widespread industrial applications. Such excess Zn2+ concentrations are toxic to humans and many aquatic organisms. The magnetic inertness and spin paired electronic configuration of Zn2+ makes it hard to detect by common analytical techniques. Therefore, fluorometric detection using chemosensor is the most effective tool for the environmental and biological detection of Zn2+. We have developed a novel pyridine-constrained bis(triazole-linked hydroxyquinoline) ligand as a reversible fluorescent chemosensor for Zn2+. The symmetrical ligand is highly selective for Zn2+ and fluoresces brightly upon complexation compared with other metal ions based on chelation-enhanced fluorescence mechanism. Interestingly, free ligand can be regenerated by treating the ligand–Zn2+ complex with aqueous ammonia.  相似文献   

8.
Acetylenic monomers undergo aqueous suspension polymerization providing particles constructed by helical substituted polyacetylene. Different from suspension polymerization of vinyl monomers, a cosolvent is indispensable to dissolve Rh catalyst and solid acetylenic monomers. The cosolvent is found to play essential roles in monomers' polymerization and the particles' formation. To systemically explore the effects of cosolvents, three monomers, M1 (achiral, liquid), M2 (achiral, solid), and M3 (chiral, solid), and six cosolvents (divided into two groups by their miscibility with water) are used for performing suspension polymerization in aqueous media at 30 °C, with Rh+B (C6H5)4 as catalyst and polyvinylpyrrolidone as stabilizer. FTIR spectra and gel permeation chromatography confirm the occurrence of polymerization. Raman spectra demonstrate the high cis contents of the polymer chains. Scanning electron microscope images show that the polymer particles obtained under optimal conditions are in spherical morphology. Circular dichroism and UV‐vis spectroscopy demonstrate the helical structures of the polymer chains forming the chiral particles. Dynamic light scattering characterization is carried out to characterize the nanoparticles. The type and amount of the cosolvent affect the polymerization remarkably. Cosolvents with higher polarity lead to smaller polymer particles, while lower polar cosolvents provide larger ones. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2670–2678  相似文献   

9.
The development of reliable and reproducible chemistries for the immobilization of biomolecules to a conducting polymer is a key challenge in the design and preparation of a CP‐based biosensor. In this article, the syntheses and electropolymerization of a series of new 3‐alkylthiophene derivatives functionalized with the most used reactive groups in immobilization chemistry, including maleimide, azide, and anhydride, are described. Despite the nucleophilic or electrophilic nature of the reactive groups, the synthesized thiophene monomers exhibit rather good polymerizability, and the reactive groups withstand the polymerization conditions and are correctly incorporated into the resulting electroactive polymers. The reactivity of the pendant reactive groups of the resulting polymers to attach biomolecules has been examined with different redox‐active, photoactive compounds as well as recognition elements as model compounds. It has been confirmed that with well‐established procedures developed for the immobilization of enzymes, the model compounds can be easily and selectively bound onto these new conducting polymers without the loss of their optical and electrochemical activity. Therefore, these conductive materials with a broad spectrum of reactive groups will provide a useful platform for developing CP‐based biosensors for a wide range of applications. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4547–4558, 2005  相似文献   

10.
11.
Hydrazone-based receptor containing electron-withdrawing chromogenic substituents 1,10-phenanthroline-2,9-di-carboxaldehydic-(2,4-dinitrophenyl)-hydrazone (1) has been synthesized. The interaction with different anions via hydrogen bonding was demonstrated by UV-Vis absorption spectroscopy to give a purple 1:1 complexes in DMSO, whose association constant decreases in line with the following order of the studied anions (AcO > F > H2PO4 > OH >>Cl∼Br∼I). As a naked-eyes colorimetric sensor for anions, the study has a latent application importance.   相似文献   

12.
Acetylenes containing salicylideneaniline groups—N‐salicylidene‐3‐ethynylaniline ( 1 ), N‐(3‐t‐butylsalicylidene)‐3‐ethynylaniline ( 2 ), and N‐(3‐t‐butylsalicylidene)‐4‐ethynylaniline ( 3 )—polymerized smoothly and gave yellow to red polymers in excellent yields when a rhodium catalyst was employed. Polymers with alkyl substituents on the aromatic rings [poly( 2 ) and poly( 3 )] were soluble in CHCl3, tetrahydrofuran, and so forth, whereas the polymer without alkyl substituents [poly( 1 )] was insoluble in any solvent. N‐(3‐t‐Butylsalicylidene)propargylamine did not provide any polymer. Thermogravimetric analyses of the resultant polymers exhibited good thermal stability (To, onset temperature of weight loss > 300 °C). The ultraviolet–visible spectra of the polymers showed absorption maxima and cutoff wavelengths around 360 and 520 nm, respectively. The polymers exhibited largely Stokes‐shifted fluorescence (emission wavelength ? 550 nm) upon photoexcitation at 350 nm, which resulted from the photoinduced intramolecular proton transfer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2458–2463, 2002  相似文献   

13.
随着光学成像技术的不断突破,荧光可视化已经从简单的肉眼观察逐步向宽场显微、共聚焦显微、超分辨成像等方向发展.然而,荧光可视化在薄膜基材料中的传感应用依然以肉眼观察以及少量的宽场显微为主要分析手段.同时,薄膜基材料结构和性质的可视化分析研究也滞后于荧光可视化技术的发展.基于此,结合本课题组近几年的研究成果,本文系统评述了荧光共聚焦显微技术在薄膜基材料体相分散状态和表面性质的可视化分析中的应用进展,并对当前薄膜基荧光传感材料面临的问题和可能的解决方案进行了简要探讨.  相似文献   

14.
A series of organosoluble, aromatic polyamides were synthesized from a 4‐methyl‐substituted, triphenylamine‐containing, aromatic diacid monomer, 4,4′‐dicarboxy‐4″‐methyltriphenylamine, which is a blue‐light (454‐nm) emitter with a fluorescence quantum efficiency of 46%. These triphenylamine‐based, high‐performance polymers had strong fluorescence emissions in the blue region with high quantum yields up to 64% and one reversible oxidation redox couple around 1.20 V versus Ag/AgCl in acetonitrile solutions. They exhibited good thermal stability, with 10% weight loss temperatures above 480 °C under a nitrogen atmosphere and with relatively high glass‐transition temperatures (252–309 °C). All the polyamides revealed excellent stability of electrochromic characteristics, changing color from the original pale yellow to blue. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4095–4107, 2006  相似文献   

15.
A series of novel polyamides with pendent naphthylamine units having inherent viscosities of 0.15–1.02 dL/g were prepared via direct phosphorylation polycondensation from various diamines and a naphthylamine‐based aromatic dicarboxylic acid, 1‐[N,N‐di(4‐carboxyphenyl)amino]naphthalene. These amorphous polyamides were readily soluble in various organic solvents and could be cast into transparent and tough films. The aromatic polyamides had useful levels of thermal stability associated with high glass‐transition temperatures (268–355 °C), 10% weight loss temperatures in excess of 480 °C, and char yields at 800 °C in nitrogen higher than 60%. These polymers showed maximum ultraviolet–visible absorption at 350–358 nm and exhibited fluorescence emission maxima around 435–458 nm in N‐methyl‐2‐pyrrolidinone solutions with fluorescence quantum yields ranging from 0.4 to 15.0%. The hole‐transporting and electrochromic properties were examined with electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the polyamide films cast onto an indium tin oxide coated glass substrate exhibited one oxidative redox couple around 1.08–1.16 V (oxidation onset potential) versus Ag/AgCl in an acetonitrile solution and revealed good stability of the electrochromic characteristics, with a color change from colorless to green at applied potentials ranging from 0 to 1.6 V. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6094–6102, 2006  相似文献   

16.
The influence of the polymer chain structure of soluble polyphenylene (SPP) on the photoluminescence (PL) quenching of fluorene is strongly affected by the 1,2‐phenylene (1,2‐Ph)/1,4‐phenylene (1,4‐Ph) unit molar ratios of SPP, and the amount of 1,4‐Ph units is a major factor for PL quenching. The addition of the fluorenyl group by the formation of carbon–carbon bond at the polymer chain end of SPP is also an important factor for PL quenching of fluorene. Charge (electron) transfer from the fluorenyl end‐group to the main chain of ω‐fluorenyl‐functionalized SPP (FL‐SPP) was very efficient. UV/Vis and PL spectra suggested that this FL‐SPP may be useful for preparing an effective polymer photocell. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
A series of triphenylamine‐based polymers containing electron‐donating methoxy (? OCH3) and electron‐withdrawing cyano or nitro (? CN or ? NO2) substituents in the main chains have been designed and investigated. These conjugated polymers ( P1 – P3 ) could be readily prepared by oxidative coupling polymerization from monomers ( M1 – M3 ) using FeCl3 as an oxidant. The P2 and P3 exhibited moderate high Tg values (203–205 °C) and thermal stability. These polymers in NMP solution showed UV–vis absorption around 288–404 nm and photoluminescence peaks around 435–492 nm. P1 – P3 showed reversible oxidation redox couples at Eonset = 0.67, 0.99, and 1.00 V in solution of 0.1 M tetrabutylammonium perchlorate (TBAP)/acetonitrile (CH3CN), respectively. M3 and P3 exhibited reversible reduction redox couples at Eonset = ?1.04 and ?1.03 V. These polymers also revealed electrochromic characteristic changing color at different potential. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 285–294, 2009  相似文献   

18.
In this work, we describe the direct covalent attachment of protein recognition elements (biotin) with the carboxyl groups present on the walls of polyimide nanochannels. Subsequently, these biotinylated channels were used for the bio‐specific sensing of protein analytes. Moreover, surface charge of these asymmetric nanochannels was reversed from negative to positive via the conversion of carboxyl groups into terminated amino groups. The negatively charge (carboxylated) and positively charged (aminated) channels were further used for the electrochemical sensing of bovine serum albumin (BSA, pI = 4.7). These biorecognition events were assessed from the changes in the ionic current flowing through the nanochannel.

  相似文献   


19.
In this Communication, novel water‐soluble hyperbranched polysiloxanes (WHPSs) simultaneously containing hydroxyl and primary amine groups are developed. The polymers are constructed via melt polycondensation, that is, transesterification reaction between ethoxyl groups of (3‐aminopropyl)triethoxysilane and hydroxyl groups of dihydric alcohols, using a one‐step process under catalyst‐free conditions. Surprisingly, the resultant WHPSs can emit bright blue fluorescence in the 100% solid state under the irradiation of UV light, and their photoluminescence intensities in aqueous solutions continuously go up along with increasing concentrations. Interestingly, their hydrolyzates display more intense luminescence compared to the unhydrolyzed. The efficient and easily controllable preparation strategy provides a remarkable and versatile platform for the fabrication of neoteric fluorescent materials for various potential applications.

  相似文献   


20.
Water-soluble polymers containing amine, carboxylic acid, and sulfonic acid groups were investigated as polychelatogens through the liquid phase polymer-based retention, LPR technique, under different experimental conditions. The metal ions investigated are: Ag(I), Cu(II), Co(II), Ni(II), Ca(II), Hg(II), and Cr(III). An important effect of the pH and the ligand type was observed on the metal ion retention. As the pH increases the metal ion retention increases. Two types of metal ion interactions are involved: coordination and electrostatic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号