共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we study the existence and regularity of solutions to the Stokes and Oseen equations with nonhomogeneous Dirichlet boundary conditions with low regularity. We consider boundary conditions for which the normal component is not equal to zero. We rewrite the Stokes and the Oseen equations in the form of a system of two equations. The first one is an evolution equation satisfied by Pu, the projection of the solution on the Stokes space – the space of divergence free vector fields with a normal trace equal to zero – and the second one is a quasi-stationary elliptic equation satisfied by (I−P)u, the projection of the solution on the orthogonal complement of the Stokes space. We establish optimal regularity results for Pu and (I−P)u. We also study the existence of weak solutions to the three-dimensional instationary Navier–Stokes equations for more regular data, but without any smallness assumption on the initial and boundary conditions. 相似文献
2.
Masao Yamazaki 《Mathematische Nachrichten》2016,289(17-18):2281-2311
This paper is concerned with the stationary Navier–Stokes equation in the whole plane and in the two–dimensional exterior domain invariant under the action of the cyclic group of order 4, and gives a condition on the potentials yielding the external force, and on the boundary value, sufficient for the unique existence of a small solution equivariant with respect to the aforementioned cyclic group. 相似文献
3.
Xin Zhao Jian Li Jian Su Gang Lei 《Numerical Methods for Partial Differential Equations》2013,29(6):2146-2160
This article proposes and analyzes a multilevel stabilized finite volume method(FVM) for the three‐dimensional stationary Navier–Stokes equations approximated by the lowest equal‐order finite element pairs. The method combines the new stabilized FVM with the multilevel discretization under the assumption of the uniqueness condition. The multilevel stabilized FVM consists of solving the nonlinear problem on the coarsest mesh and then performs one Newton correction step on each subsequent mesh thus only solving one large linear systems. The error analysis shows that the multilevel‐stabilized FVM provides an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution solving the stationary Navier–Stokes equations on a fine mesh for an appropriate choice of mesh widths: hj ~ hj‐12, j = 1,…,J. Therefore, the multilevel stabilized FVM is more efficient than the standard one‐level‐stabilized FVM. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013 相似文献
4.
M.M. Rashidi H. Shahmohamadi G. Domairry 《Numerical Methods for Partial Differential Equations》2011,27(2):292-301
The similarity transform for the steady three‐dimensional Navier–Stokes equations of flow between two stretchable disks gives a system of nonlinear ordinary differential equations. In this article, the variational iteration method was used for solving these equations. The results have been compared with the numerical results. This article depicts that the VIM is an efficient and powerful method for solving nonlinear differential equations. This method is applicable to strongly and weakly nonlinear problems. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011 相似文献
5.
In this paper, we combine the Galerkin–Lagrange multiplier (GLM) method with the two-level method to solve the stationary Navier–Stokes equations in order to avoid the time-consuming process and the construction of zero-divergence elements. Different quadrilateral partitions are used for approximating the velocity and the pressure. Then some error estimates are obtained and some numerical results of the GLM method and the two-level GLM method are given. The results show that the two-level method based on the GLM method is more efficient than the GLM method under the convergence rate of same order. 相似文献
6.
Adam Kubica Milan Pokorný Wojciech Zajączkowski 《Mathematical Methods in the Applied Sciences》2012,35(3):360-371
We examine the conditional regularity of the solutions to the Navier–Stokes equations in the entire three‐dimensional space under the assumption that the data are axially symmetric. We show that if a radial or angular component of velocity satisfies a weighted Serrin condition, then the solution is regular. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
7.
This note studies the well‐posedness of the fractional Navier–Stokes equations in some supercritical Besov spaces as well as in the largest critical spaces for β ∈ (1/2,1). Meanwhile, the well‐posedness for fractional magnetohydrodynamics equations in these Besov spaces is also studied. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
8.
In this paper, we present Homotopy perturbation method (HPM) and Padé technique, for finding non‐perturbative solution of three‐dimensional viscous flow near an infinite rotating disk. We compared our solution with the numerical solution (fourth‐order Runge–Kutta). The results show that the HPM–Padé technique is an appropriate method in solving the systems of nonlinear equations. The mathematical technique employed in this paper is significant in studying some other problems of engineering. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
9.
Manuel Núñez 《Mathematical Methods in the Applied Sciences》2010,33(3):323-331
A number of bounds upon the pressure are known to guarantee regularity of the solutions of the Navier–Stokes equations. Since the pressure is the potential whose source is the product of the velocity and its gradient, it is worth to consider bounds depending on the quotient of the pressure and some quantity measuring the size of this source. Estimates involving the ratio pressure–velocity are known. Our result includes the velocity gradient: if the ratio remains bounded for some r<1, so does the velocity and therefore it retains its regularity. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
10.
We consider the steady compressible Navier–Stokes equations of isentropic flow in three‐dimensional domains with several exits to infinity with prescribed pressure drops. On the one hand, when each exit is supposed to contain a cone inside, we shall construct bounded energy weak solution for adiabatic constant γ>3. On the other hand, when the exits do not open sufficiently rapidly, we shall prove a non‐existence result. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
11.
We establish the moment estimates for a class of global weak solutions to the Navier–Stokes equations in the half‐space. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
12.
The quaternionic calculus is a powerful tool for treating the Navier–Stokes equations very elegantly and in a compact form, through the evaluation of two types of integral operators: the Teodorescu operator and the quaternionic Bergman projector. While the integral kernel of the Teodorescu transform is universal for all domains, the kernel function of the Bergman projector, called the Bergman kernel, depends on the geometry of the domain. In this paper, we use special variants of quaternionic‐holomorphic multiperiodic functions in order to obtain explicit formulas for unbounded three‐dimensional parallel plate channels, rectangular block domains and regular triangular channels. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
13.
In this per, we consider a special class of initial data for the three‐dimensional incompressible Navier–Stokes equations with gravity. We show that, under such conditions, the incompressible Navier‐Stokes equations with gravity are globally well posed, and the velocity minus gravity term has finite energy. The important features of the initial data is that the velocity fields minus gravity term are almost parallel to the corresponding vorticity fields in a very large space domain. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
14.
Global classical solution to 1D compressible Navier–Stokes equations with no vacuum at infinity 下载免费PDF全文
Yulin Ye 《Mathematical Methods in the Applied Sciences》2016,39(4):776-795
C. Miao In this paper, we are concerned with the 1D Cauchy problem of the compressible Navier–Stokes equations with the viscosity μ(ρ) = 1+ρβ(β≥0). The initial density can be arbitrarily large and keep a non‐vacuum state at far fields. We will establish the global existence of the classical solution for 0≤β < γ via a priori estimates when the initial density contains vacuum in interior interval or is away from the vacuum. We will show that the solution will not develop vacuum in any finite time if the initial density is away from the vacuum. To study the well‐posedness of the problem, it is crucial to obtain the upper bound of the density. Some new weighted estimates are applied to obtain our main results. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
15.
We consider the Navier–Stokes equations for compressible, barotropic flow in two space dimensions, with pressure satisfying p(?)=a?logd(?) for large ?, here d>1 and a>0. After introducing useful tools from the theory of Orlicz spaces, we prove a compactness result for the solution set of the equations with respect to the variation of the underlying bounded spatial domain. Especially, we get a general existence theorem for the system in question with no restrictions on smoothness of the bounded spatial domain. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
16.
The conforming spectral element methods are applied to solve the linearized Navier–Stokes equations by the help of stabilization techniques like those applied for finite elements. The stability and convergence analysis is carried out and essential numerical results are presented demonstrating the high accuracy of the method as well as its robustness. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 115–141, 1998 相似文献
17.
This paper studies the Cauchy problem of the 3D Navier–Stokes equations with nonlinear damping term | u | β?1u (β ≥ 1). For β ≥ 3, we derive a decay rate of the L2‐norm of the solutions. Then, the large time behavior is given by comparing the equation with the classic 3D Navier–Stokes equations. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
18.
Solutions to the Navier–Stokes equations with mixed boundary conditions in two‐dimensional bounded domains 下载免费PDF全文
In this paper we consider the system of the non‐steady Navier–Stokes equations with mixed boundary conditions. We study the existence and uniqueness of a solution of this system. We define Banach spaces X and Y, respectively, to be the space of “possible” solutions of this problem and the space of its data. We define the operator and formulate our problem in terms of operator equations. Let and be the Fréchet derivative of at . We prove that is one‐to‐one and onto Y. Consequently, suppose that the system is solvable with some given data (the initial velocity and the right hand side). Then there exists a unique solution of this system for data which are small perturbations of the previous ones. The next result proved in the Appendix of this paper is W2, 2‐regularity of solutions of steady Stokes system with mixed boundary condition for sufficiently smooth data. 相似文献
19.
Yong Zhou 《Mathematical Methods in the Applied Sciences》2007,30(10):1223-1229
In this paper we derive a decay rate of the L2‐norm of the solution to the 3‐D Navier–Stokes equations. Although the result which is proved by Fourier splitting method is well known, our method is new, concise and direct. Moreover, it turns out that the new method established here has a wide application on other equations. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
20.
《Mathematische Nachrichten》2018,291(11-12):1781-1800
We show existence theorem of global mild solutions with small initial data and external forces in the time‐weighted Besov space which is an invariant space under the change of scaling. The result on local existence of solutions for large data is also discussed. Our method is based on the ‐ estimate of the Stokes equations in Besov spaces. Since we construct the global solution by means of the implicit function theorem, as a byproduct, its stability with respect to the given data is necessarily obtained. 相似文献