首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nylon‐66 nanocomposites were prepared by melt‐compounding nylon‐66 with organically modified montmorillonite (MMT). The organic MMT layers were exfoliated in a nylon‐66 matrix as confirmed by wide‐angle X‐ray diffraction (WAXD) and transmission electron microscopy. The presence of MMT layers increased the crystallization temperature of nylon‐66 because of the heterogeneous nucleation of MMT. Multiple melting behavior was observed in the nylon‐66/MMT nanocomposites, and the MMT layers induced the formation of form II spherulites of nylon‐66. The crystallite sizes L100 and L010 of nylon‐66, determined by WAXD, decreased with an increasing MMT content. High‐temperature WAXD was performed to determine the Brill transition in the nylon‐66/MMT nanocomposites. Polarized optical microscopy demonstrated that the dimension of nylon‐66 spherulites decreased because of the effect of the MMT layers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2861–2869, 2003  相似文献   

2.
We have successfully developed a simple method for preparing silver nanoparticles (Ag NPs) using UV irradiation of AgNO3 in the interlamellar space of a montmorillonite (MMT) without any reducing agent or heat treatment. The properties of Ag/MMT nanocomposites were studied as a function of the UV irradiation period. UV irradiation disintegrated the Ag NPs into smaller size until a relatively stable size and size distribution were achieved. The results from UV–vis spectroscopy show that particles size of Ag NPs decrease with the increase of irradiation period. The crystalline structure of Ag NPs was determined by powder X-ray diffraction (PXRD).  相似文献   

3.
The surface modification of montmorillonite clay was carried out through ion‐ exchange reaction using p‐phenylenediamine as a modifier. This modified clay was employed to prepare aromatic polyamide/organoclay nanocomposite materials. The dispersion behavior of clay was examined in the polyamide matrix. Polyamide chains were synthesized from 4‐aminophenyl sulfone and isophthaloyl chloride (IPC) in dimethylacetamide. These amide chains were suitably end‐capped with carbonyl chloride end groups to interact chemically with modified montmorillonite clay. The resulting nanocomposite films containing 2–20 wt% of organoclay were characterized by TEM, X‐ray diffraction (XRD), thin‐film tensile testing; thermogravimetric analysis (TGA), differential scanning calorimetric (DSC) and water absorption measurements. Mechanical testing revealed that modulus and strength improved up to 6 wt% organoclay loading while elongation and toughness of nanocomposites decreased with the addition of clay content in the matrix. Thermal decomposition temperatures of the nanocomposites were in the range 225–450 °C. These nanocomposites expressed increase in the glass‐transition temperature values relative to pure polyamide describing interfacial interactions among the phases. The percent water uptake of these composites reduced upon the addition of modified layered silicate depicting improved barrier properties. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Parent Ca-montmorillonite (Jelšovy Potok, Slovakia, Ca-JP) and Na-montmorillonite Kunipia-F (Japan, Na-KU) were ion-exchanged with octadecyltrimethylammonium (ODTMA) cations. Characteristics of the samples were studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (IR) and thermogravimetry (TG). Surface areas were measured by sorption of N2 and ethyleneglycol monoethyl ether. Scanning electron microscopy photographs (SEM) were used to characterize the texture of samples. The XRD patterns show that, upon intercalation, the basal spacing of montmorillonite is expanded and corresponds to the pseudotrimolecular arrangement of organic cations in the interlayers. The IR spectra of organically modified montmorillonite show C-H stretching and bending bands of both CH3 and CH2 groups in the 3000–2800 cm−1 and 1500–1400 cm−1 region, respectively. Modification of montmorillonite by organic cations decreased the hydrophilicity of their mineral surface and adsorbed water evaporated at lower temperatures. The SEM photographs reveal a tendency towards lump formation and agglomeration of the ODTMA-montmorillonite particles. The modification introducing organic moiety lead to a substantial decrease in the surface area of both montmorillonites; however, it remained remarkably high, being at the level typical for silica. Completely characterized fillers were used to prepare rubber compositions with enhanced physical properties, as described in Hrachová et al. (2008).  相似文献   

5.
Clay organifier with propylene oxide‐capped polyethylene glycol (PEG) with amine end group (jeffamines ED600–2003) was synthesized through an ion exchange process between sodium cations in montmorillonite (MMT) and ? NH groups in ED600–2003. The d‐spacing of organoclay was found to be 1.697–1.734 nm compared to 0.96 nm of pristine MMT. Transmission electron microscopy (TEM) was used to determine the molecular dispersion of the clay within ED600. Polyurethane‐urea/montmorillonite (PUU‐MMT) nanocomposites were prepared via in situ polymerization from polyethylene glycol (PEG 400) or 1,4 butane diol (1,4 BD), toluene diisocyanate (TDI), jeffamines ED600–2003, and 1–12 wt% of organoclay. Intercalation of PUU into modified clays was confirmed by X‐ray diffraction (XRD), scanning electron microscopy, and TEM. The barrier properties were significantly reduced; however, the thermal stability was increased in the nanocomposites as compared to the pristine polymer. Nanocomposites exhibited optical clarity and solvent resistance. The mechanical properties and the glass transition temperature of PUU were improved with the addition of organoclay. The incorporation of silicate layers gave rise to a considerable increase in the storage modulus (stiffness), demonstrating the reinforcing effect of clay on the PUU matrix. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The pressure–volume–temperature (PVT) behavior was studied for two polycyanurate networks having different crosslink densities using a pressurizable dilatometer. The samples were studied at temperatures ranging from 60 to 180 °C and at pressures up to 170 MPa to yield PVT data in both rubbery and glassy states. The Tait equation is found to well describe the isobaric temperature scan and isothermal pressure scan data. The thermal expansion coefficients, instantaneous bulk moduli, and thermal pressure coefficients are extracted from the data and their dependence on crosslink density is examined. The time‐dependent viscoelastic bulk modulus (K(t)) is also calculated in the vicinity of the α‐relaxation from previously published pressure relaxation experimental data, and the strength and shape of the dispersion are found to be independent of crosslink density. The limiting bulk moduli depend strongly on temperature with those of the more loosely crosslinked sample being lower at a given temperature and pressure, although at Tg(P), the limiting moduli of the more loosely crosslinked sample are slightly higher than those of the more highly crosslinked sample. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

7.
Nanocomposite materials composed of poly (ethylene terephthalate) (PET) and montmorillonite (MMT) clays were prepared by in situ polymerization. Samples consisted of PET blended with various quantities of either pristine (Na+‐MMT) or organically modified MMT (A10‐MMT). The morphology and thermal and mechanical properties were evaluated for each sample. TEM micrographs, acquired at a 20 nm resolution, provide direct evidence of exfoliation of the clay particles into the PET matrix and show the effect of the alkyl‐modifier on clay dispersibility. The dispersion of PET/A10‐MMT was greater than that observed for the PET/Na+‐MMT nanocomposites. The greatest degree of exfoliation occurred for PET/A10‐MMT 0.5 wt %. However, PET/Na+‐MMT exhibited higher crystallization temperatures and rates suggesting that Na+‐MMT is a more efficient nucleating agent. Both mechanically and thermally, PET/A10‐MMT nanocomposites exhibited superior properties over pure PET. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1022–1035, 2008  相似文献   

8.
Monoalkyl- and dialkyl-imidazolium surfactants were used to prepare organically modified montmorillonites with markedly improved thermal stability in comparison with their alkyl-ammonium equivalents (the decomposition temperatures increased by ca. 100 °C). Such an increase in the thermal stability affords the opportunity to form syndiotactic polystyrene (s-PS)/imidazolium-montmorillonite nanocomposites even under static melt-intercalation conditions in the absence of high shear rates or solvents. Upon nanocomposite formation, s-PS exhibited an improvement in the thermal stability in comparison with neat s-PS, and the β-crystal form of s-PS became dominant. This crystallization response agrees with previous studies of s-PS/pyridinium-montmorillonite hybrids and is tentatively attributed to a heterogeneous nucleation action by the inorganic fillers. © 2003 Wiley Periodicals, Inc.* J Polym Sci Part B: Polym Phys 41: 3173–3187, 2003  相似文献   

9.
Polyvinyl chloride (PVC)/organic-montmorillonite composites were prepared by melt intercalation. Their structures and properties were investigated with X-ray diffraction (XRD), differential scanning calorimetry (DSC) and mechanical testing. The results showed that PVC chains could be intercalated into the gallery of organically modified montmorillonite to form exfoliated PVC/organic-montmorillonite nanocomposites, and the glass transition temperatures of PVC/organic-montmorillonite composites were lower than that of neat PVC. However, the tensile strength, and both the Izod type and Charpy notched impact strengths of PVC/organic-montmorillonite nanocomposites were fitted with the linear expressions: t=535.07-6.39T g, s I=378.76-4.59T g and sC=276.29-3.59T g, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Thermal analysis is a useful tool for investigating the properties of polymer/clay nanocomposites and mechanisms of improvement of thermal properties. This review work presents examples of applications of differential scanning calorimetry (DSC), modulated temperature differential scanning calorimetry (MT-DSC), dynamic mechanical thermal analysis (DMA), thermal mechanical analysis (TMA), thermogravimeric analysis (TG) and thermoanalytical methods i.e. TG coupled with Fourier transformation infrared spectroscopy (TG-FTIR) and mass spectroscopy (TG-MS) in characterization of nanocomposite materials. Complex behavior of different polymeric matrices upon modification with montmorillonite is briefly discussed.  相似文献   

11.
Polylactide (PLA)‐layered silicate nanocomposites plasticized with 20 wt % of poly(ethylene glycol) 1000 were prepared by melt blending. Three kinds of organo‐modified montmorillonites—Cloisite® 20A, Cloisite® 25A, and Cloisite® 30B—were used as fillers at a concentration level varying from 1–10 wt %. Neat PLA and plasticized PLA with the same thermomechanical history were considered for comparison. Nanocomposites based on amorphous PLA were obtained via melt‐quenching. The influence of both plasticization and nanoparticle filling on the physicochemical properties of the nanocomposites were investigated. Characterization of the systems was achieved by size exclusion chromatography (SEC), thermogravimetric analysis (TGA), thermally modulated differential scanning calorimetry (TMDSC), X‐ray diffraction (XRD), and dynamic mechanical analysis (DMTA). SEC revealed a decrease of the molecular weight of the PLA matrix with the filler content. Thermal behavior on heating showed one cold crystallization process in the reference neat PLA sample, while two cold crystallization processes in plasticized PLA and plasticized nanocomposites. The thermal windows of these processes tend to increase with the filler content. The crystalline form of PLA developed upon heating was affected neither by the plasticization nor by the type and content of Cloisite used. It was found that the series of organo‐modified montmorillonites with decreasing affinity to PLA is Cloisite® 30B, Cloisite® 20A, and Cloisite® 25A, respectively. The dynamic mechanical properties were sensitive to the sample composition. Generally, the storage modulus increased with the filler content. Glassy PEG, well dispersed within unfilled PLA matrix, exhibited also a reinforcing effect, since the storage modulus of this sample was higher than for unplasticized reference at temperature region below the glass transition of PEG. Moreover, loss modulus of all plasticized samples revealed an additional maximum ascribed to the glass transition of PEG–rich dispersed phase, indicating partial miscibility of organic components of the systems investigated. The magnitude of this mechanical loss was correlated with the filler content, and to some extent, also with the nanofiller ability to be intercalated by polymer components. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 299–311, 2006  相似文献   

12.
Polyurethane/organically modified montmorillonite (PU/O‐MMT) nanocomposites were electrospun and the effect of O‐MMT on the morphology and physical properties of the PU/O‐MMT nanofiber mats were investigated for the first time. The average diameters of the PU/O‐MMT nanofibers were ranged from 150 to 410 nm. The conductivities of the PU/O‐MMT solutions were linearly increased with increasing the content of O‐MMT, which caused a decrease in the average diameters of the PU/O‐MMT nanofibers. The as‐electrospun PU and PU/O‐MMT nanofibers were not microphase separated. The exfoliated MMT layers were well distributed within the PU/O‐MMT nanofibers and oriented along the fiber axis. When the PU/O‐MMT nanofibers were annealed, the exfoliated MMT layers hindered the microphase separation of the PU. The electrospinning of PU/O‐MMT nanocomposites resulted in PU nanofiber mats with improved Young's modulus and tensile strength. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3171–3177, 2005  相似文献   

13.
PP/TiO2 nanocomposites were prepared from an original method based on the hydrolysis‐condensation (sol–gel method) reactions of titanium alkoxide inorganic precursor premixed with polypropylene (PP) under molten conditions. Nanocomposites with a mean diameter of primary particles lower than 5 nm were then prepared. The TiO2 particle dispersion in the PP matrix was characterized over a wide length scale from the combination of small angle X‐ray scattering, transmission electron microscopy, and linear viscoelasticty of molten nanocomposites. As a result, a fractal structure of these particles was highlighted at the highest concentration (φr ≥ 0.014) with a characteristic aggregation size daggr ≈ 130 nm. The relationships between fractal structure and linear viscoelastic have been discussed from the main works of the literature on the reinforcement of nanocomposites. The drastic alteration of the terminal relaxation zone (solid‐like behavior) is correlated to the formation of an aggregate‐particle network. The study of the nonlinear viscoelastic behavior (Payne effect) agrees qualitatively with this reinforcement mechanism. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1213–1222, 2010  相似文献   

14.
An exploratory pioneering study on the fabrication of nylon‐6/montmorillonite (MMT) nanocomposites with the aid of water as an intercalating/exfoliating agent via melt compounding in a twin‐screw extruder was conducted. Commercial nylon‐6 pellets and pristine MMT powder were directly fed into the hopper of the extruder. Water was then injected into the extruder downstream. After interactions with the nylon‐6 melt/pristine MMT system, water was removed from the extruder further downstream via a venting gate. As such, no third‐component residual was left within the extrudates. Transmission electron microscopy micrographs showed that pristine MMT was uniformly dispersed in the nylon‐6 matrix. The contact time between water and the nylon‐6/pristine MMT system inside the extruder was so short that nylon‐6 was subjected to very little hydrolysis, if any. The resultant nanocomposites showed higher stiffness, superior tensile strength, and improved thermal stability in comparison with their counterparts obtained without water assistance and the nylon‐6/organic MMT nanocomposites. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1100–1112, 2005  相似文献   

15.
In this study, three chromophores—p‐nitroaniline, 4‐(4‐nitrophenylazo)aniline, and 4‐[(E)‐2‐{4‐[(E)‐2‐(4‐nitrophenyl)‐1‐diazenyl]phenyl}‐1‐diazenyl]aniline—were intercalated into layered aluminosilicate saponite and then dispersed into the polyurethanes matrix. The intercalated chromophore/saponite complexes were examined by inductively coupled plasma emission and element analysis technologies. The molecular orbital package computation simulation and X‐ray diffraction (XRD) analysis showed that possible configurations of chromophore ions on the gallery surfaces of saponite suggest that the chromophore molecules lie parallel to the basal planes of silicate as an inclined paraffin structure or as pseudo‐multilayers. The XRD and transmission electron microscopy analysis indicated that the delamination of organoclay in the polyurethanes matrix exhibited nanolayers, exfoliated structure, or both. In particular, even at high doping levels up to 15 wt % of organoclay, the [chromophore]+‐saponite/polyurethanes film did not display a macroscopic aggregation of layered silicates and showed high transparency. The thermal stability of chromophore was significantly enhanced as intercalated into the layered aluminosilicate saponite, and the glass‐transition temperature of [chromophore]+‐saponite/polyurethanes nanocomposites proportionally increased with increased clay content. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1690–1703, 2002  相似文献   

16.
Polybenzoxazine (PBZ), which has a structure similar to that of phenolic resin, is formed through the thermal self‐curing of benzoxazine, that is through a heterocyclic ring opening reaction that requires no catalyst and releases no condensation byproducts. We have used the solvent blending method to prepare PBZ/clay nanocomposites possessing various clay contents. We synthesized a monofunctional benzoxazine monomer (MBM) and then treated the clay with this intercalation agent. The results of X‐ray diffraction (XRD) analysis indicated that MBM intercalated into the galleries of the clay; the nanocomposite possessed an exfoliated structure at 3% clay content. To better understand the curing kinetics of the PBZ/clay nanocomposites, we performed dynamic and isothermal differential scanning calorimetry (DSC) measurements. We describe the thermodynamics of the curing process, using all three of the Kissinger, Ozawa, and Kamal models. The Kissinger and Ozawa methods gave fairly close results for the calculated activation energies, which decreased upon increasing the clay content. The Kamal method, based on an autocatalytic model, suggested a total reaction order of between 2.4 and 2.8. The glass transition temperature (Tg) decreased upon increasing the clay content. Thermogravimetric analysis (TGA) indicated that the nanocomposites have higher decomposition temperatures than does the pristine PBZ; this finding suggests an enhancement in their thermal stability. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 347–358, 2006  相似文献   

17.
ABS/Clay nanocomposites were prepared using two ABS with different Acrylonitrile (AN) contents and four montmorillonite clays; a natural clay (CNa+) and three modified clays, Cloisites 10A, 20A, and 30B. The composites were prepared in a twin‐screw extruder. Results were analyzed considering the effect of clay and ABS type, on the clay dispersion, intercalation and exfoliation, as well as on the storage modulus and thermal stability of the nanocomposites. XRD and TEM confirm that when using an ABS with higher AN content (ABS2), a better dispersion and intercalation–exfoliation can be obtained. Cloisites 20A and 30B, respectively the one with greater initial intergallery spacing, but lower polarity and with smaller inter‐gallery spacing but greater polarity, produce the ABS nanocomposites with the greater intergallery spacing. Both ABS polymers have similar storage modulus and Tg and in both cases, the modulus increases with the 4 wt % clay. This increase is greater with the modified clays and slightly greater with the ABS2. Tg, from tan δ, increases very little with the 4 wt % clay, but again, this is slightly greater with ABS2. TGA and flammability tests show that the dispersed clay enhances the thermal stability and that the ABS with higher AN content produces a greater increase in fire retardancy. Tests also show that the better thermal stability and fire retardancy is obtained with the Cloisites 20A or 30B. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 190–200, 2008  相似文献   

18.
A fully exfoliated organoclay in thermotropic liquid crystalline polymer (TLCP) based nanocomposite was prepared by a method combining ultrasonication, centrifugation, solution casting, and heat‐shearing separation. Morphological study showed that the organoclays of 15–25 nm in size dispersed uniformly in TLCP with fully exfoliated structures. The organoclays formed molecular level interactions with TLCP molecules. The interactions did not affect the liquid crystallinity and mesophase structure of TLCP, but they affected the thermal stability and thermal properties of TLCP, increasing the thermal stability and shifting the transition temperatures to the higher ends. Mechanical rheology investigations in the linear viscoelastic region showed that with the exfoliated organoclay in TLCP, more obvious pseudosolidlike behavior appeared in the terminal region. The rigidity of TLCP was enhanced by the presence of the exfoliated organoclay with percolated structures in the TLCP matrix. In steady shear tests, the nanocomposite had the similar shear viscosity and N1 (the first normal stress difference) to those of TLCP in the steady state condition. Percolated structures were easily destroyed by sufficient shear strain and the exfoliated organoclays were oriented along the shear direction, even assisting the neighboring TLCP molecules to align in the flow direction, resulting in a decrease of viscosity and an increase of the N1 slope. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 712–720, 2010  相似文献   

19.
Montmorillonite (MMT) was modified with the acidified cocamidopropyl betaine (CAB) and the resulting organo‐montmorillonite (O‐MMT) was dispersed in an epoxy/methyl tetrahydrophthalic anhydride system to form epoxy nanocomposites. The intercalation and exfoliation behavior of the epoxy nanocomposites were examined by X‐ray diffraction and transmission electron microscopy. The curing behavior and thermal property were investigated by in situ Fourier transform infrared spectroscopy and DSC, respectively. The results showed that MMT could be highly intercalated by acidified CAB, and O‐MMT could be easily dispersed in epoxy resin to form intercalated/exfoliated epoxy nanocomposites. When the O‐MMT loading was lower than 8 phr (relative to 100 phr resin), exfoliated nanocomposites were achieved. The glass‐transition temperatures (Tg's) of the exfoliated nanocomposite were 20 °C higher than that of the neat resin. At higher O‐MMT loading, partial exfoliation was achieved, and those samples possessed moderately higher Tg's as compared with the neat resin. O‐MMT showed an obviously catalytic nature toward the curing of epoxy resin. The curing rate of the epoxy compound increased with O‐MMT loading. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1192–1198, 2004  相似文献   

20.
Polymer nanocomposites based on thermoplastic polyurethane (TPU) containing organophilic montmorillonite (OMMT) were prepared by melt compounding method followed by compression molding. Different percentage of organically modified nanoclays (1, 3, 5, 7, and 9 wt%) was incorporated into the TPU matrix in order to examine the influence of the nanofillers on nanophase morphology and materials' properties. The microstructure morphology of the nanocomposites was examined by transmission electron microscopy (TEM), energy dispersion X‐ray analysis (EDX), wide angle X‐ray diffraction (WAXD), and atomic force microscope (AFM). The observation established that the organoclay is homogeneously dispersed and preferentially embedded in the TPU soft segment phase. Significant enhancement in the thermal stability of the nanocomposites was observed with the addition of the OMMT under thermogravimetric analysis (TGA). Dynamic mechanical properties of the TPU nanocomposites were analyzed using a dynamic mechanical thermal analyzer (DMTA), which confirms that the addition of OMMT has a strong influence on the storage and loss modulus of the TPU matrix. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号