首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binary dopant mixture of (ZrO2/AgI) (v/v) is prepared in different ratios to enhance the conductivity of the synthesized PANI. DC conductivity of (ZrO2/AgI) (v/v) doped PANI samples is measured in the temperature range (300‐400K). The calculated values of pre‐exponential factor (σ0) indicates that conduction is taking place through hopping process due to localized states present near the Fermi level. Structural changes due to interaction of dopant species with PANI are studied through FT‐IR and Photoluminescence characterization. Photoluminescence (PL) spectra of the doped samples occurred in the form of peaks and the intensities of these peaks vary according to the concentration of dopant mixture. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2682–2687, 2007  相似文献   

2.
Three polyaromatic‐based polymers are reported to contain co‐monomers of trapezoidal tribenzopentaphene (TBP) polycyclic aromatic hydrocarbons. The synthetic strategy consists of initially making highly soluble tetraphenylbenzene copolymers 4a–c , followed by a cyclodehydrogenation/aromatization reaction to obtain target polymers 5a–c . The polymers were characterized by gel permeation chromatography, FT‐IR, UV‐vis, emission, 1H‐, and 13C‐nuclear magnetic resonance spectroscopy. The target polymers 5a–c reveal emission spectra in the range of 430–480 nm; thus, qualifying them to act as blue emitters. Investigation of the polymers optical properties and their correlation with density functional theory calculations suggest a distorted TBP core from planarity caused by the introduction of a dodecyl group at its wide edge. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3565–3572  相似文献   

3.
The formation of oligomers in emulsifier‐free emulsion polymerization of styrene was characterized by means of gel permeation chromatography and surface tension measurements. GPC analysis showed incessant oligomer formation throughout the emulsion polymerization process. Oligomers spanned a molecular weight range of 200–1,500, have an w of 800–900, an n of 600–800 and a polydispersity index of 1.3. On average, the oligomers contain 4 to 6 styrene units. UV detection could not be utilized to acquire the weight ratio of oligomers to polymers without correction. Combination was the major mode of termination of free radicals in the aqueous phase, but disproportionation was not negligible: for every three‐combination reactions there was about 1 disproportionation. Surface tension measurements showed that oligomers minimized the surface tension of the latex at about 50 min reaction to only 30 mN/m. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1323–1336, 2000  相似文献   

4.
4‐{n‐[4‐(4‐Nitrophenylazo)phenyloxy]alkyl}aminobenzene sulfonic acid (Cn‐ABSA, where n = 2, 4, 6, 8, or 10) as a novel dopant for conducting polymers of polyaniline (PANI) was designed and synthesized. The molecular structure of Cn‐ABSA was characterized with 1H NMR, Fourier transform infrared, and secondary‐ion mass spectrometry. Nanostructures (nanotubes or nanorods) of PANI–(Cn‐ABSA) were successfully synthesized with a self‐assembly process in the presence of Cn‐ABSA as the dopant. The morphology (shape and size) and conductivity of the resulting nanostructures strongly depended on the number of alkyl groups (n) and, in particular, the addition of water before polymerization. The formed micelles of aniline/Cn‐ABSA/water were proposed to be templatelike in forming PANI–(Cn‐ABSA) nanostructures on the basis of the emulsion properties measured by dynamic light scattering. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3485–3497, 2001  相似文献   

5.
Various densely grafted polymers containing poly(aniline‐2‐sulfonic acid‐co‐aniline)s as side chains and polystyrene as the backbone were prepared. A styryl‐substituted aniline macromonomer, 4‐(4‐vinylbenzoxyl)(Ntert‐butoxycarbonyl)phenylamine (4‐VBPA‐tBOC), was first prepared by the reaction of 4‐aminophenol with the amino‐protecting moiety di‐tert‐butoxyldicarbonate, and this was followed by substitution with 4‐vinylbenzyl chloride. 4‐VBPA‐tBOC thus obtained was homopolymerized with azobisisobutyronitrile as an initiator, and this was followed by deprotection with trifluoroacetic acid to generate poly[4‐(4‐vinylbenzoxyl)phenylamine] (PVBPA) with pendent amine moieties. Second, the copolymerization of aniline‐2‐sulfonic acid and aniline was carried out in the presence of PVBPA to generate densely grafted poly(aniline‐2‐sulfonic acid‐co‐aniline). Through the variation of the molar feed ratio of aniline‐2‐sulfonic acid to aniline, various densely grafted copolymers were generated with different aniline‐2‐sulfonic acid/aniline composition ratios along the side chains. The copolymers prepared with molar feed ratios greater than 1/2 were water‐soluble and had conductivities comparable to those of the linear copolymers. Furthermore, these copolymers could self‐dope in water through intermolecular or intramolecular interactions between the sulfonic acid moieties and imine nitrogens, and this generated large aggregates. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1090–1099, 2005  相似文献   

6.
Poly[N‐(4‐vinylbenzyl)‐N,N‐dibutylamine hydrochloride] trithiocarbonate, which contains the reactive trithiocarbonate group and the appending surface‐active groups, is used as both surfactant and macromolecular reversible addition‐fragmentation chain transfer (macro‐RAFT) agent in batch emulsion polymerization of styrene. Under the conditions at high monomer content of ~20 wt % and with the molecular weight of the macro‐RAFT agent ranging from 4.0 to 15.0 kg/mol, well‐controlled batch emulsion RAFT polymerization initiated by the hydrophilic 2‐2′‐azobis(2‐methylpropionamidine) dihydrochloride is achieved. The polymerization leads to formation of nano‐sized colloids of the poly[N‐(4‐vinylbenzyl)‐N,N‐dibutylamine hydrochloride]‐b‐ polystyrene‐b‐poly[N‐(4‐vinylbenzyl)‐N,N‐dibutylamine hydrochloride] triblock copolymer. The colloids generally have core‐shell structure, in which the hydrophilic block forms the shell and the hydrophobic block forms the core. The molecular weight of the triblock copolymer linearly increases with increase in the monomer conversion, and the values are well‐consistent with the theoretical ones. The molecular weight polydispersity index of the triblock copolymer is below 1.2 at most cases of polymerization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Novel self‐assembled nano/microstructured conducting PANICN was prepared by in situ intercalative emulsion polymerization of aniline in aqueous dispersion of clay using bifunctional amphiphilic dopant, 3‐pentadecyl phenol‐4‐sulphonic acid (PDPSA) derivable from renewable resource. X‐ray diffraction and scanning electron microscopy (SEM) studies revealed the formation of monolayer of protonated PANI intercalated nanoclays with template polymerized self‐assembled micro/nanostructured protonated PANI. Nano/micro structured PANIs were formed by the supra molecular self‐assembling of the inter‐chain hydrogen bonding, inter‐plane phenyl stacking and electrostatic layer by layer self‐assembling (ELBS) between polarized alkyl chains present dopant anions and were manifested using fourier transform infra red spectroscopy and differential scanning calorimetry. On the basis of the results, structure‐directing effect of ‘anilinium salt micelle’ was schematically illustrated in this article. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2664–2673, 2007  相似文献   

8.
Conductive composites consisted of epoxy resin and polyanilines (PANIs) doped with dodecylbenzenesulfonic acid ( 1 ), dodecylsulfonic acid (2), di(2‐ethylhexyl)sulfosuccinic acid (3), and HCl were synthesized by use of Ntert‐butyl‐5‐methylisoxazolium perchlorate (5) under various reaction conditions. It was found that the composites with PANI doped with acid 2 (PANI‐2) prepared by curing with 10 mol % of reagent 5 at 80 °C for 12 h showed high electroconductivity along with the low conducting percolation threshold (3 wt % of PANI‐2). Furthermore, the composite with even ?10 wt % of PANI‐2 exhibited ?10?1 S/cm of electroconductivity. The UV–vis and IR measurements indicated that the conductive emeraldine salt form of PANI‐2 in the composite was maintained after the curing reaction. The thermal stability was studied by TGA and DSC measurements, and then, the Td10 and Tg of the composite with 5 and 10 wt % of PANI‐2 were found to be similar to those with the cured epoxy resin itself. In addition, the similar investigation with an oxetane resin instead of the epoxy resin was also carried out. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 718–726, 2006  相似文献   

9.
Poly(N‐vinyl‐2‐pyrrolidone‐crotonic acid) [P(VP/CrA)] hydrogels were prepared by irradiating the ternary mixture of VP/CrA and crosslinking agent ethylene glycol dimethacrylate (EGDMA) in water by γ rays at ambient temperature. Differential scanning calorimetry and thermogravimetric analysis were performed to evaluate the thermal properties of ionized networks and to establish if they showed thermal differences that could be related to the CrA content in the gel system. The volume swelling ratio of P(VP/CrA) hydrogels were investigated as a function of the pH in the immersing solution. The volume swelling ratio of these hydrogels increased with an increase in pH and a decrease CrA content in the hydrogel. The volume swelling ratio of the hydrogels was also evaluated using an equation, based on the Flory—Huggins thermodynamic theory, the phantom network theory of James–Guth and Donnan theory of swelling of weakly charged ionic gels for determination of the molecular weight between crosslinks and the polymer–solvent interaction parameter (χ). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
The preparation of 3‐miktoarm star terpolymers using nitroxide mediated radical polymerization (NMP), ring opening polymerization (ROP), and click reaction [3 + 2] are carried out by applying two types of one‐pot technique. In the first one‐pot technique, NMP of styrene (St), ROP of ε‐caprolactone (ε‐CL), and [3 + 2] click reaction (between azide end‐functionalized poly(ethylene glycol) (PEG‐N3)/or azide end‐functionalized poly(methyl methacrylate) (PMMA‐N3) and alkyne) are carried out in the presence of 2‐(hydroxymethyl)‐2‐methyl‐3‐oxo‐3‐(2‐phenyl‐2‐(2,2,6,6‐tetramethylpiperidin‐1‐yloxy)ethoxy) propyl pent‐4‐ynoate, 2 , as an initiator for 48 h at 125 °C (one‐pot/one‐step). As a second technique, NMP of St and ROP of ε‐CL were conducted using 2 as an initiator for 20 h at 125 °C, and subsequently PEG‐N3 or azide end‐functionalized poly(tert‐butyl acrylate (PtBA‐N3) was added to the polymerization mixture, followed by a click reaction [3 + 2] for 24 h at room temperature (one‐pot/two‐step). The 3‐miktoarm star terpolymers, PEG‐poly(ε‐caprolactone)(PCL)‐PS, PtBA‐PCL‐PS and PMMA‐PCL‐PS, were recovered by a simple precipitation in methanol without further purification. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3588–3598, 2007  相似文献   

11.
3‐Arm star‐block copolymers, (polystyrene‐b‐poly(methyl methacrylate))3, (PS‐b‐PMMA)3, and (polystyrene‐b‐poly(ethylene glycol))3, (PS‐b‐PEG)3, are prepared using double‐click reactions: Huisgen and Diels–Alder, with a one‐pot technique. PS and PMMA blocks with α‐anthracene‐ω‐azide‐ and α‐maleimide‐end‐groups, respectively, are achieved using suitable initiators in ATRP of styrene and MMA, respectively. However, PEG obtained from a commercial source is reacted with 3‐acetyl‐N‐(2‐hydroxyethyl)‐7‐oxabicyclo[2.2.1]hept‐5‐ene‐2‐carboxamide (7) to give furan‐protected maleimide‐end‐functionalized PEG. Finally, PS/PMMA and PS/PEG blocks are linked efficiently with trialkyne functional linking agent 1,1,1‐tris[4‐(2‐propynyloxy)phenyl]‐ethane 2 in the presence of CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) at 120 °C for 48 h to give two samples of 3‐arm star‐block copolymers. The results of the peak splitting using a Gaussian deconvolution of the obtained GPC traces for (PS‐b‐PMMA)3 and (PS‐b‐PEG)3 displayed that the yields of target 3‐arm star‐block copolymers were found to be 88 and 82%, respectively. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7091–7100, 2008  相似文献   

12.
In this work, poly(4‐vinylbenzylboronic acid‐co‐4(5)‐vinylimidazole) (poly(4‐VBBA‐co‐4‐Vim)) copolymers were synthesized by free‐radical copolymerization of the monomers 4‐VBBA and 4‐Vim at various monomer feed ratios. The copolymers were characterized by 1H MAS NMR and 11B MQ‐MAS NMR methods and the copolymer composition was determined via elemental analysis. The membrane properties of these copolymers were investigated after doping with phosphoric acid at several stoichiometric ratios. The proton exchange reaction between acid and heterocycle is confirmed by FTIR. Thermal properties of the samples were investigated via thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC). The morphology of the copolymers was characterized by x‐ray diffraction, XRD. The temperature dependence of proton conductivities of the samples was investigated by means of impedance spectroscopy. Proton conductivity of the copolymers increased with the doping ratio and reached to 0.0027 S/cm for poly(4‐VBBA‐co‐4‐Vim)/2H3PO4 in the anhydrous state. The boron coordination in the copolymer was determined by 11B MQ‐MAS experiment and the coexistence of three and four coordinated boron sites was observed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1267–1274, 2009  相似文献   

13.
14.
A reversible addition–fragmentation chain transfer (RAFT) agent, 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN), was synthesized and applied to the RAFT polymerization of glycidyl methacrylate (GMA). The polymerization was conducted both in bulk and in a solvent with 2,2′‐azobisisobutyronitrile (AIBN) as the initiator at various temperatures. The results for both types of polymerizations showed that GMA could be polymerized in a controlled way by RAFT polymerization with CPDN as a RAFT agent; the polymerization rate was first‐order with respect to the monomer concentration, and the molecular weight increased linearly with the monomer conversion up to 96.7% at 60 °C, up to 98.9% at 80 °C in bulk, and up to 64.3% at 60 °C in a benzene solution. The polymerization rate of GMA in bulk was obviously faster than that in a benzene solution. The molecular weights obtained from gel permeation chromatography were close to the theoretical values, and the polydispersities of the polymer were relatively low up to high conversions in all cases. It was confirmed by a chain‐extension reaction that the AIBN‐initiated polymerizations of GMA with CPDN as a RAFT agent were well controlled and were consistent with the RAFT mechanism. The epoxy group remained intact in the polymers after the RAFT polymerization of GMA, as indicated by the 1H NMR spectrum. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2558–2565, 2004  相似文献   

15.
A dendritic macroinitiator having 16 TEMPO‐based alkoxyamines, Star‐16 , was prepared by the reaction of a dendritic macroinitiator having eight TEMPO‐based alkoxyamines, [G‐3]‐OH , with 4,4′‐bis(chlorocarbonyl)biphenyl. The nitroxide‐mediated radical polymerization (NMRP) of styrene (St) from Star‐16 gave 16‐arm star polymers with PDI of 1.19–1.47, and NMPR of 4‐vinylpyridine from the 16‐arm star polymer gave 16‐arm star diblock copolymers with PDI of 1.30–1.43. The ring‐opening polymerization of ε‐caprolactone from [G‐3]‐OH and the subsequent NMRP of St gave AB8 9‐miktoarm star copolymers with PDI of 1.30–1.38. The benzyl ether linkages of the 16‐arm star polymers and the AB8 9‐miktoarm star copolymers were cleaved by treating with Me3SiI, and the resultant poly(St) arms were investigated by size exclusion chromatography (SEC). The SEC results showed PDIs of 1.23–1.28 and 1.18–1.22 for the star polymers and miktoarm stars copolymers, respectively, showing that they have well‐controlled poly(St) arms. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1159–1169, 2007.  相似文献   

16.
NMR studies of the structure and dynamics of a system composed of the acidic polymer poly(acrylic acid) (PAA) and the basic polymer poly(4‐vinyl pyridine) (P4VP) are presented. This system aims at the application of anhydrous proton‐conducting membranes that can be used at elevated temperatures at which the proton conduction of hydrated membranes breaks down. The 1H NMR measurements have been preformed under fast magic angle spinning (MAS) conditions to achieve sufficient resolution and the applied 1H NMR methods vary from simple 1H MAS to double‐quantum filtered methods and two‐dimensional 1H double‐quantum spectroscopy. The dynamic behavior of the systems has been investigated via variable temperature 1H MAS NMR. 13C cross‐polarization MAS NMR provides additional aspects of dynamic and structural features to complete the picture. Different types of acidic protons have been identified in the studied PAA‐P4VP systems that are nonhydrogen‐bonded free acidic protons, hydrogen‐bonded dicarboxylic dimers, and protons forming hydrogen bonds between carboxylic protons and ring nitrogens. The conversion of dimer structures in dried PAA to free carboxylic acid groups is accomplished at temperatures above 380 K. However, the stability of hydrogen‐bonding strongly depends on the hydration level of the polymer systems. The effect of hydration becomes less apparent in the complexes. An inverse proportionality between hydrogen‐bonding strength and proton conduction in the PAA‐P4VP acid–base polymer blend systems was established. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 138–155, 2009  相似文献   

17.
4′‐Nonafluorobutylstyrene (3) was synthesized and polymerized by conventional and controlled radical polymerization (iodine transfer polymerization (ITP)). Such an aromatic fluoromonomer was prepared from Ullmann coupling between 1‐iodoperfluorobutane and 4‐bromoacetophenone followed by a reduction and a dehydration in 50% overall yield. Two radical polymerizations of (3) were initiated by AIBN either under conventional or controlled conditions, with 1‐iodoperfluorohexane in 84% monomer conversion and in 50% yield. ITP of (3) featured a fast monomer conversion and a linear evolution of the ln([M]0/[M]) versus time. The kinetics of radical homopolymerization of (3) enabled one to assess its square of the propagation rate to the termination rate (kp2/kt) in ITP conditions (36.2·10?2 l·mol?2·sec?2 at 80 °C) from the Tobolsky's kinetic law. Polydispersity index (?) of the fluoropolymer achieved by conventional polymerization was 1.30 while it worthed 1.15 when synthesized by ITP. Thermal stabilities of these oligomers were satisfactory (10% weight loss under air occurred from 305 °C) whereas the melting point was 47 °C. Contact angles and surface energies assessed from spin‐coated poly(3) films obtained by conventional (hysteresis = 18°, surface energy 18 mN.m?1) and ITP (hysteresis = 47°, surface energy 15 mN.m?1) evidenced ? values' influence onto surface properties of the synthesized polymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3202–3212  相似文献   

18.
Poly(dimethylsiloxane)‐containing diblock and triblock copolymers were prepared by the combination of anionic ring‐opening polymerization (AROP) of hexamethylcyclotrisiloxane (D3) and nitroxide‐mediated radical polymerization (NMRP) of methyl acrylate (MA), isoprene (IP), and styrene (St). The first step was the preparation of a TIPNO‐based alkoxyamine carrying a 4‐bromophenyl group. The alkoxyamine was then treated with Li powder in ether, and AROP of D3 was carried out using the resulting lithiophenyl alkoxyamine at room temperature, giving functional poly(D3) with Mw/Mn of 1.09–1.16. NMRPs of MA, St, and IP from the poly(D3) at 120 °C gave poly(D3b‐MA), poly(D3b‐St), and poly(D3b‐IP) diblock copolymers, and subsequent NMRPs of St from poly(D3b‐MA) and poly(D3b‐IP) at 120 °C gave poly(D3b‐MA‐b‐St) and poly(D3b‐IP‐b‐St) triblock copolymers. The poly(dimethylsiloxane)‐containing diblock and triblock copolymers were analyzed by 1H NMR and size exclusion chromatography. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6153–6165, 2005  相似文献   

19.
Thiophene monomers displaying a dimethylenecarboxylate (CH2CH2COOR) substituent on the 3‐position of the aromatic ring can be easily obtained and in one step from the electrochemically induced reaction of 3‐bromothiophene with the corresponding acrylate (CH2?CHCOOR). The synthesis of the ethyl ester monomer, of related 2,5‐dihalogenothiophenes, and their polymerization are reported. Despite the surprisingly low solubilities displayed by the polymers, a full spectroscopic characterization could be performed and the data fully analyzed. Oxidative polymerizations (FeCl3 or electropolymerization) yield a regioirregular polythiophene, with 60–70% of head‐to‐tail diads. Both experimental and theoretical results suggest that the nonconjugated ester plays a very minor role—if any—in the polymerizations under oxidative conditions, but has a significant influence on the polymer properties. Preliminary attempts to polymerize the dihalogenothiophenes under reductive conditions were hampered by the even lower solubilities exhibited by the regioregular oligomers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
5‐Norbornene‐2‐ethyl ester (mixture of endo and exo) is polymerized via ring‐opening metathesis polymerization, yielding polymers with molecular weights ranging from 50,000 to 5,000,000 g/mol. The polymers are hydroxylated and saponified without alteration of the molecular weight. The polymers are analyzed by NMR, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis. Films are cast from the polymers at several molecular weights and their rheological properties are investigated. The results showed greater solid‐like character with increasing molecular weight for all polymers analyzed. Cell viability studies showed that the films possessed minimal cytotoxicity. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号