首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By comparing the far infrared (polyethylene pellets, room temperature) and mid-infrared spectra (KBr pellets, room temperature and ca. 90 K) of pseudo trigonal planar Ce(η5-C5Me5)3 (1) with the corresponding ones of La(η5-C5Me5)3 (2) and considering the low temperature paramagnetic susceptibility data of 1 the crystal field (CF) splitting pattern of 1 could be derived. The free parameters of a phenomenological Hamiltonian were fitted to this pattern achieving an r.m.s. deviation of 8.9 cm−1 for seven assignments. The fact that the difference of the experimental energies of the barycenters of CF levels of the multiplets 2F7/2 and 2F5/2 is larger than in the gaseous free Ce3+ ion (experimental “anti”-relativistic nephelauxetic effect) could be explained by coupling effects of these multiplets via the CF, resulting in a lower spin-orbit coupling parameter than in the case of the free gaseous Ce3+ ion. The experimental CF splitting pattern of 1 is compared to the results of a relativistic DV-Xα calculation on the pseudo trigonal planar model compound Ce(η5-C5H5)3. In addition, the prediction of the energies of f → d and charge transfer transitions of Ce(η5-C5H5)3 are compared to the absorption and luminescence spectra of complex 1.  相似文献   

2.
Electronic Structures of Organometallic Complexes of f Elements. 68 Absorption and First Luminescence and Raman Spectroscopic Polarization Measurements of an Oriented Organometallic Single Crystal: Pr(C5Me4H)3 Optical polarization measurements of oriented single crystals of Pr(C5Me4H)3 ( 1 ) were performed at room temperature. In order to separate “cold” and “hot” f‐f‐transitions and νC–H combination vibrations, the absorption spectra of KBr pellets of compound 1 and La(C5Me4H)3 ( 2 ) were additionally recorded at ca. 77 K. To gather additional information about the wavefunctions of the crystal field (CF) states of complex 1 , a magnetic circular dichroism spectrum of 1 was recorded too. From the spectra obtained, a partial CF splitting pattern of 1 was derived, and simulated by fitting the free parameters of a phenomenological Hamiltonian, leading to a reduced r.m.s. deviation of 24.8 cm−1 for 24 assignments. On the basis of these phenomenological CF parameters, the global CF strength experienced by the Pr3+ central ion was estimated, and seems to be the largest one ever encountered in PrIII chemistry. The obtained Slater parameter F2 and the spin‐orbit coupling parameter ζ4f allow the insertion of compound 1 into empirical nephelauxetic and relativistic nephelauxetic series, respectively, of PrIII compounds. With its low F2 value, complex 1 is the most covalent PrIII compound (considering only f electrons) found to date. The experimentally‐based non‐relativistic molecular orbital scheme (in the f range) of complex 1 was determined and compared with the results of a previous Xα‐SW calculation on the ψ trigonal planar model compound Pr(η5‐C5H5)3. In the framework of the search for “polarized” luminescence transitions, polarized Raman spectra of 1 were recorded too, and compared to the corresponding FIR and IR spectra run by means of pellets.  相似文献   

3.
Electronic Structures of Organometallic Complexes of f Elements. 65 First Observation of Linear Dichroism of a Homoleptic Organometallic π Complex of f Elements: Tris(η5‐tetramethylcyclopentadienyl)neodymium(III) The absorption spectrum of a powder sample of pseudo (Ψ) trigonal planar Nd(η5‐C5Me4H)3 ( 1 ) has been measured at room temperature and ca. 40 K, respectively, and the linear dichroism spectra of σ‐ and π‐type of an oriented single crystal at ambient temperature and 77 K. Neglecting the signals of the C–H combination vibrations and overtones extracted from the absorption spectrum of La(η5‐C5Me4H)3 ( 2 ), the observed polarization properties of the remaining f‐f transitions allowed the derivation of a truncated crystal field splitting pattern. The free parameters of a phenomenological Hamiltonian were fitted to this pattern leading to a reduced r.m.s. deviation of 16.1 cm?1 for 38 assignments. The temperature dependence of the paramagnetic susceptibility of 1 was calculated, making use of the crystal field energies and wavefunctions of the fit. Introducing an orbital reduction factor of 0.98, calculated values of 1 agree well with the experimental ones of Ψ trigonal planar Nd(C5H4tBu)3.  相似文献   

4.
In the crystal structure of the title compound, [LiPd2Cl4(C12H12N2)2](C24F20B)·1.196CD2Cl2 or [{(Me2bipy)PdCl2}2(μ‐Li)]+·B(C6F5)4·1.196CD2Cl2 (Me2bipy is 4,4′‐di­methyl‐2,2′‐bi­pyridine), an Li+ cation is stabilized by complexation with two (Me2bipy)PdCl2 units through weak Li—Cl interactions. This compound is thus a rare example of a complex that exhibits an arrested Cl abstraction.  相似文献   

5.
The dissolution of (perfluoroorgano)difluoroboranes RFBF2 in anhydrous HF (aHF) resulted in equilibrium mixtures of the starting borane and different kinds of acid‐base products: [H2F] [RFBF2(F · HF)] (RF = C6F5, cis‐C2F5CF=CF, trans‐C4F9CF=CF) or [H2F] [RFBF3] (RF = C6F13). In aHF the aryl compounds C6F5BF2 and K [C6F5BF3] showed two parallel reactivities with XeF2: xenodeborylation (formation of the [C6F5Xe]+ cation) and fluorine addition to the aryl group. In aHF perfluoroalk‐1‐enyldifluoroboranes RFBF2 as well as potassium perfluoroalk‐1‐enyltrifluoroborates K [RFBF3] (RF = cis‐C2F5CF=CF, trans‐C4F9CF=CF) underwent only fluorine addition across the carbon‐carbon double bond under the action of XeF2. Potassium perfluorohexyltrifluoroborate K [C6F13BF3] did not react with XeF2 in aHF.  相似文献   

6.
Upon reaction of gaseous Me3SiF with the in situ prepared Lewis acid Al(ORF)3, the stable ion‐like silylium compound Me3Si‐F‐Al(ORF)3 1 forms. The Janus‐headed 1 is a readily available smart Lewis acid that differentiates between hard and soft nucleophiles, but also polymerizes isobutene effectively. Thus, in reactions of 1 with soft nucleophiles (Nu), such as phosphanes, the silylium side interacts in an orbital‐controlled manner, with formation of [Me3Si?Nu]+ and the weakly coordinating [F?Al(ORF)3] or [(FRO)3Al‐F‐Al(ORF)3] anions. If exchanged for hard nucleophiles, such as primary alcohols, the aluminum side reacts in a charge‐controlled manner, with release of FSiMe3 gas and formation of the adduct R(H)O?Al(ORF)3. Compound 1 very effectively initiates polymerization of 8 to 21 mL of liquid C4H8 in 50 mL of CH2Cl2 already at temperatures between ?57 and ?30 °C with initiator loads as low as 10 mg in a few seconds with 100 % yield but broad polydispersities.  相似文献   

7.
The utilization of 5‐hydroxymethyl furfural (HMF) as a renewable feedstock for polymer synthesis has not yet been achieved as it is structurally asymmetric and contains three active functional groups. Reported here is the unprecedented step‐growth copolymerization of HMF and dihydrosilanes, through a coordination mechanism, to afford linear poly(silyl ether)s in the presence of B(C6F5)3 and the heteroscorpionate zinc hydride complex LZnH [L=(MePz)2CP(Ph)2NPh, MePz=3,5‐dimethylpyrazolyl]. The adduct B(C6F5)3???H???Zn, confirmed by NMR spectroscopy and DFT calculations, plays a key role in the synergistic catalysis, where B(C6F5)3 activates ZnH and stabilizes the Zn+ active species, and the sterically bulky ZnH effectively inhibits (C6F5)3B from reacting with dihydrosilane to form (C6F5)3B‐H‐Si, which facilely initiates ring opening of furan. The mechanism was studied by DFT simulations.  相似文献   

8.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

9.
Double chloride abstraction of Cp*AsCl2 gives the dicationic arsenic species [(η5‐Cp*)As(tol)][B(C6F5)4]2 ( 2 ) (tol=toluene). This species is shown to exhibit Lewis super acidity by the Gutmann–Beckett test and by fluoride abstraction from [NBu4][SbF6]. Species 2 participates in the FLP activation of THF affording [(η2‐Cp*)AsO(CH2)4(THF)][B(C6F5)4]2 ( 5 ). The reaction of 2 with PMe3 or dppe generates [(Me3P)2As][B(C6F5)4] ( 6 ) and [(σ‐Cp*)PMe3][B(C6F5)4] ( 7 ), or [(dppe)As][B(C6F5)4] ( 8 ) and [(dppe)(σ‐Cp*)2][B(C6F5)4]2 ( 9 ), respectively, through a facile cleavage of C?As bonds, thus showcasing unusual reactivity of this unique As‐containing compound.  相似文献   

10.
The reagent Me3Si(C6F5) was used for the preparation of a series of perfluorinated, pentafluorophenyl‐substituted 3,6‐dihydro‐2H‐1,4‐oxazines ( 2 – 8 ), which, otherwise, would be very difficult to synthesize. Multiple pentafluorophenylation occurred not only on the heterocyclic ring of the starting compound 1 (Scheme), but also in para position of the introduced C6F5 substituent(s) leading to compounds with one to three nonafluorobiphenyl (C12F9) substituents. While the tris(pentafluorophenyl)‐substituted compound 3 could be isolated as the sole product by stoichiometric control of the reagent, the higher‐substituted compounds 5 – 8 could only be obtained as mixtures. The structures of the oligo(perfluoroaryl) compounds were confirmed by 19F‐ and 13C‐NMR, MS, and/or X‐ray crystallography. DFT simulations of the 19F‐ and 13C‐NMR chemical shifts were performed at the B3LYP‐GIAO/6‐31++G(d,p) level for geometries optimized by the B3LYP/6‐31G(d) level, a technique that proved to be very useful to accomplish full NMR assignment of these complex products.  相似文献   

11.
Syntheses and Structures of η1‐Phosphaallyl, η1‐Arsaallyl, and η1‐Stibaallyl Iron Complexes [(η5‐C5Me5)(CO)2Fe–E(SiMe3)C(OSiMe3)=CPh2] (E = P, As, Sb) The reaction of equimolar amounts of [(η5‐C5Me5)(CO)2Fe–E(SiMe3)2] ( 1 a : E = P; 1 b : As; 1 c : Sb) and diphenylketene afforded the η1‐phosphaallyl‐, η1‐arsaallyl‐, and η1‐stibaallyl complexes [(η5‐C5Me5)(CO)2Fe–E(SiMe3)C(OSiMe3)=CPh2] ( 2 a : E = P; 2 b : As; 2 c : Sb). The molecular structures of 2 b and 2 c were elucidated by single crystal X‐ray analyses.  相似文献   

12.
Piano‐stool‐shaped platinum group metal compounds, stable in the solid state and in solution, which are based on 2‐(5‐phenyl‐1H‐pyrazol‐3‐yl)pyridine ( L ) with the formulas [(η6‐arene)Ru( L )Cl]PF6 {arene = C6H6 ( 1 ), p‐cymene ( 2 ), and C6Me6, ( 3 )}, [(η6‐C5Me5)M( L )Cl]PF6 {M = Rh ( 4 ), Ir ( 5 )}, and [(η5‐C5H5)Ru(PPh3)( L )]PF6 ( 6 ), [(η5‐C5H5)Os(PPh3)( L )]PF6 ( 7 ), [(η5‐C5Me5)Ru(PPh3)( L )]PF6 ( 8 ), and [(η5‐C9H7)Ru(PPh3)( L )]PF6 ( 9 ) were prepared by a general method and characterized by NMR and IR spectroscopy and mass spectrometry. The molecular structures of compounds 4 and 5 were established by single‐crystal X‐ray diffraction. In each compound the metal is connected to N1 and N11 in a k2 manner.  相似文献   

13.
The enantioselective ketimine–ene reaction is one of the most challenging stereocontrolled reaction types in organic synthesis. In this work, catalytic enantioselective ketimine–ene reactions of 2‐aryl‐3H‐indol‐3‐ones with α‐methylstyrenes were achieved by utilizing a B(C6F5)3/chiral phosphoric acid (CPA) catalyst. These ketimine–ene reactions proceed well with low catalyst loading (B(C6F5)3/CPA=2 mol %/2 mol %) under mild conditions, providing rapid and facile access to a series of functionalized 2‐allyl‐indolin‐3‐ones with very good reactivity (up to 99 % yield) and excellent enantioselectivity (up to 99 % ee). Theoretical calculations reveal that enhancement of the acidity of the chiral phosphoric acid by B(C6F5)3 significantly reduces the activation free energy barrier. Furthermore, collective favorable hydrogen‐bonding interactions, especially the enhanced N?H???O hydrogen‐bonding interaction, differentiates the free energy of the transition states of CPA and B(C6F5)3/CPA, thereby inducing the improvement of stereoselectivity.  相似文献   

14.
The vicinal P/B frustrated Lewis pair (FLP) Mes2PCH2CH2B(C6F5)2 undergoes 1,1‐carboboration reactions with the Me3Si‐substituted enynes to give ring‐enlarged functionalized C3‐bridged P/B FLPs. These serve as active FLPs in the activation of dihydrogen to give the respective zwitterionic [P]H+/[B]H? products. One such product shows activity as a metal‐free catalyst for the hydrogenation of enamines or a bulky imine. The ring‐enlarged FLPs contain dienylborane functionalities that undergo “bora‐Nazarov”‐type ring‐closing rearrangements upon photolysis. A DFT study had shown that the dienylborane cyclization of such systems itself is endothermic, but a subsequent C6F5 migration is very favorable. Furthermore, substituted 2,5‐dihydroborole products are derived from cyclization and C6F5 migration from the photolysis reaction. In the case of the six‐membered annulation product, a subsequent stereoisomerization reaction takes place and the resultant compound undergoes a P/B FLP 1,2‐addition reaction with a terminal alkyne with rearrangement.  相似文献   

15.
The title compound has been prepared from [Ti(η5‐C5Me5)Cl3] and cis‐cis‐(t‐BuSi(OH)—CH2)3 in hexane solution in the presence of Et3N. The pale yellow complex was characterized by NMR and MS spectra, as well as by a crystal structure determination. The two crystallographic independent molecules in the triclinic unit cell (space group P1¯, No. 2, Z = 4) both have a nearly identical adamantane‐like TiO3Si3C3 cage of approximate C3v symmetry. The exocyclic C—C—C bond angles in the Cp‐ligand range from 123° to 129°. A quantum chemical calculation of the free molecule predicts this range to be 124° to 127°. The arrangement of the molecules in the crystal is characteristic for an offset face‐to‐face ππ stacking of the aromatic η5‐C5Me5 rings.  相似文献   

16.
The tris(2,4‐dimethylpentadienyl) complexes [Ln(η5‐Me2C5H5)3] (Ln = Nd, La, Y) are obtained analytically pure by reaction of the tribromides LnBr3·nTHF with the potassium compound K(Me2C5H5)(thf)n in THF in good yields. The structural characterization is carried out by X‐ray crystal structure analysis and NMR‐spectroscopically. The tris complexes can be transformed into the dimeric bis(2,4‐dimethylpentadienyl) complexes [Ln2(η5‐Me2C5H5)4X2] (Ln, X: Nd, Cl, Br, I; La, Br, I; Y, Br) by reaction with the trihalides THF solvates in the molar ratio 2:1 in toluene. Structure and bonding conditions are determined for selected compounds by X‐ray crystal structure analysis and NMR‐spectroscopically in general. The dimer‐monomer equilibrium existing in solution was investigated NMR‐spectroscopically in dependence of the donor strength of the solvent and could be established also by preparation of the corresponding monomer neutral ligand complexes [Ln(η5‐Me2C5H5)2X(L)] (Ln, X, L: Nd, Br, py; La, Cl, thf; Br, py; Y, Br, thf). Finally the possibilities for preparation of mono(2,4‐dimethylpentadienyl)lanthanoid(III)‐dibromid complexes are shown and the hexameric structure of the lanthanum complex [La6(η5‐Me2C5H5)6Br12(thf)4] is proved by X‐ray crystal structure analysis.  相似文献   

17.
Synthesis, Structure, and Reactivity of the Ferrioarsaalkene [(η5‐C5Me5)(CO)2FeAs=C(Ph)NMe2] Reaction of equimolar amounts of the carbenium iodide [Me2N(Ph)CSMe]I and LiAs(SiMe3)2 · 1.5 THF afforded the thermolabile arsaalkene Me3SiAs = C(Ph)NMe2 ( 1 ), which in situ was converted into the black crystalline ferrioarsaalkene [(η5‐C5Me5)(CO)2FeAs=C(Ph)NMe2)] ( 2 ) by treatment with [(η5‐C5Me5)(CO)2FeCl]. Compound 2 was protonated by ethereal HBF4 to yield [(η5‐C5Me5)(CO)2FeAs(H)C(Ph)NMe2]BF4 ( 3 ) and methylated by CF3SO3Me to give [(η5‐C5Me5)(CO)2FeAs(Me)C(Ph)NMe2]‐ SO3CF3 ( 4 ). [(η5‐C5Me5)(CO)2FeAs[M(CO)n]C(Ph)NMe2] ( 5 : [M(CO)n] = [Fe(CO)4]; 6 : [Cr(CO)5]) were isolated from the reaction of 2 with [Fe2(CO)9] or [{(Z)‐cyclooctene}Cr(CO)5], respectively. Compounds 2 – 6 were characterized by means of elemental analyses and spectroscopy (IR, 1H, 13C{1H}‐NMR). The molecular structure of 2 was determined by X‐ray diffraction analysis.  相似文献   

18.
The Conjugative Bridging of Organometallic Reaction Centers in Heterodinuclear Complexes [(OC)3ClRe(μ‐L)MCl(C5Me5)]+, M = Rh or Ir ‐ Spectroscopic Consequences of Reductive Activation Heterodinuclear complexes [(OC)3ClRe(μ‐L)MCl(C5Me5)](PF6), M = Rh or Ir and L = 2, 5‐bis(1‐phenyliminoethyl)pyrazine (bpip), 3, 6‐bis(2‐pyridyl)‐1, 2, 4, 5‐tetrazine (bptz) or 2, 2′‐bipyrimidine (bpym), were synthesized via mononuclear rhenium compounds (L)Re(CO)3Cl. The stepwise reductive activation under chloride dissociation was studied through cyclic voltammetry and spectroelectrochemistry in the range of CO stretching vibrations (IR), charge transfer absorptions (UV/Vis) and electron spin resonance (ESR) for paramagnetic intermediates of the mono‐ and heterodinuclear compounds. While complexes of bpip and bptz form one‐electron reduced radical intermediates [(OC)3ClRe(μ‐L)MCl(C5Me5)] ˙ , the compounds with bpym react under MCl‐dissociative two‐electron reduction directly to [(OC)3ClRe(μ‐L)M(C5Me5)].  相似文献   

19.
Chiral Half‐sandwich Pentamethylcyclopentadienyl Rhodium(III) and Iridium(III) Complexes with Schiff Bases from Salicylaldehyde and α‐Amino Acid Esters [1] A series of diastereoisomeric half‐sandwich complexes with Schiff bases from salicylaldehyde and L‐α‐amino acid esters including chiral metal atoms, [(η5‐C5H5)(Cl)M(N,O‐Schiff base)], has been obtained from chloro bridged complexes [(η5‐C5Me5)(Cl)M(μ‐Cl)]2 (M = Rh, Ir). Abstraction of chloride from these complexes with Ag[BF4] or Ag[SO3CF3] affords the highly sensitive compounds [(η5‐C5Me5)M(N,O‐Schiff base]+X? (M = Rh, Ir; X = BF4, CF3SO3) to which PPh3 can be added under formation of [(η5‐C5Me5)M(PPh3)(N,O‐Schiff base)]+X?. The diastereoisomeric ratio of the complexes ( 1 ‐ 7 and 11 ‐ 12 ) has been determined from NMR spectra.  相似文献   

20.
The lithium salts of the Me3Si‐ as well as Me3Si‐ and Me2SiF‐substituted Cyclotrisilazanes I and II react with tert‐butylacylchloride under ring contraction and formation of the cyclodisilazane‐silylester, Me3SiN(SiMe2–N)2SiMe2–O–CO–CMe3 ( 1 ). The lithium salt of the fluorodi‐methylsilyl‐substituted cyclotrisilazan III forms with benzoylchloride primarily in the analogous reaction the carboxy‐silyl‐amide, Me2SiF(N–SiMe2)2SiMe2–NH–CO–C6H5+ ( 2 ), which can be converted with III and benzoylchloride into the cyclodisilazane‐silylester, Me2SiF(NSiMe2)2SiMe2–O–CO–C6H5, ( 3 ). A silylester substituted six‐membered disila‐oxadiazine ( 4 ) is the result of the reaction of the lithiated cyclotrisilazane, (Me2SiNH)2, (Me2SiNLi) with tert‐butyl‐acylchloride. The reaction includes anionic ring contraction and can be rationilized by a process analogous to keto‐enol‐tautomerism. Dilithiated octamethyl‐cyclotetrasilazane, (Me2SiNHMe2SiNLi)2, reacts with tert‐butyl‐acylchloride or benzoylchloride in a molar ratio 1:2 to yield symmetrically acylestersubstituted cyclodisilazanes, (RCO–O–SiMe2–NSiMe2)2, R = C6H5 ( 5 ), CMe3 ( 6 ). The reaction mechanisms are discussed and the crystal structures of 2 and 6 are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号