首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Novel poly(silylenemethylene)s have been prepared by the ring‐opening polymerization of 1,3‐disilacyclobutanes followed by a protodesilylation reaction with triflic acid. The silicon–aryl bond cleavage could be controlled by using different leaving groups, for instance phenyl‐ and para‐anisyl substituents. The reactions of the triflate derivatives with organomagnesium compounds, LiAlH4, amines or alcohols gave functional substituted poly(silylenemethylene)s. Hydrosilylation reactions or reductive coupling with potassium–graphite led to organosilicon network‐polymers, which may serve as suitable precursors for silicon carbide and Si/C/N‐based materials. The structures of the polymers were identified by nuclear magnetic resonance spectroscopy (29Si, 13C, 1H). Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
A series of macrocyclic arylene ether ketone oligomers from 4,4′-difluorobenzophenone, 2,4′-difluorobenzophenone and 1,3-bis(4′-fluorobenzoyl)benzene were prepared via aromatic nucleophilic substitution according to the pseudo-high dilution principle. Small-size aromatic macrocycles were isolated by silica gel column chromatography with cyclohexane/ethyl acetate as eluent. The chemical structures of these small-size macrocycles were characterized by matrix-assisted laser desorption ionization–time-of-flight–mass spectrometry (MALDI–TOF–MS), IR, 19F-,1H-, and 13C-NMR, and GPC techniques. Molecular chain length and steric hindrance of monomers affected the product compositions. The NMR results show that there are different chemical shifts in the different ring-size macrocyclic poly arylene ether ketones in spite of having the same repeating unit. The crystallizability and thermal properties of small-size arylene ether ketone macrocycles were also investigated by DSC, WAXD, TGA, and the results suggest that the crystallization and thermal properties are related to their intrinsic chemical structures. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1957–1967, 1999  相似文献   

3.
The polycondensation of decafluorobenzophenone with hexafluorobisphenol A was modified by the addition of a molecular sieve dehydrating apparatus to the refluxing reaction system. This modification promoted the polymerization and enabled the reactions to be conducted in milder conditions and completed in a shorter time, thereby depressing side reactions such as branching and crosslinking. The resulting fluorinated poly(arylene ether ketone)s (FPAEK) were free of gel particles and possessed the designed molecular weights. This modified procedure was also suitable for introducing crosslinkable pentafluorostyrene (FSt) moieties into the polymers at the chain ends and/or inside the chain with the vinyl group of FSt being pendant. The resulting FSt containing fluorinated poly(arylene ether ketone)s (FPAEK‐FSt) can then be thermally crosslinked at 100 °C in the presence of 1% benzoyl peroxide (BPO) or at 250 °C without any initiator. The glass‐transition temperatures (Tg's) of FPAEK increased with increasing molecular weight and leveled off at about 147 °C for the polymer with a number‐average molecular weight of 18,600 Da, whereas the values were not apparently affected by the addition of FSt units. However, crosslinking of the FPAEK‐FSt resulted in an approximate 30 °C increase of the Tg. Spin‐coating FPAEK‐FSt onto silicon wafers followed by crosslinking gave films with excellent thermal stability, physical strength, and adhesion to the substrate as well as good reproducibility in terms of film preparation and optical properties. The refractive index and birefringence of the films measured at a wavelength of 1.55 μm were 1.502 and 2.5 × 10?3, respectively. © 2002 Government of Canada. Exclusive worldwide publication rights in the article have been transferred to Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4205–4216, 2002  相似文献   

4.
A bisphenol monomer (2,5‐dimethoxy)phenylhydroquinone was prepared and further polymerized to obtain poly(arylene ether ketone) copolymers containing methoxy groups. After demethylation and sulfobutylation, a series of novel poly(arylene ether ketone)s bearing pendant sulfonic acid group (SPAEKs) with different sulfonation content were obtained. The chemical structures of all the copolymers were analyzed by 1H NMR and 13C NMR spectra. Flexible and tough membranes with reasonably good mechanical properties were prepared. The resulting side‐chain‐type SPAEK membranes showed good dimensional stability, and their water uptake and swelling ratio were lower than those of conventional main‐chain‐type SPAEK membranes with similar ion exchange capacity. Proton conductivities of these side‐chain‐type sulfonated copolymers were higher than 0.01 S/cm and increased gradually with increasing temperature. Their methanol permeability values were in the range of 1.97 × 10?7–5.81 × 10?7 cm2/s, which were much lower than that of Nafion 117. A combination of suitable proton conductivities, low water uptake, low swelling ratio, and high methanol resistance for these side‐chain‐type SPAEK films indicated that they may be good candidate material for proton exchange membrane in fuel cell applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

5.
A series of copoly(ether ketone)s containing double bonds along the polymer chains were synthesized from the condensation polymerization of hydroquinone with 4,4′‐difluorobenzophenone and 4,5‐bis(4‐fluorobenzoyl)‐1‐methylcyclohexene in sulfolane containing anhydrous potassium carbonate. The presence of methylcyclohexene in the polymer chains resulted in an improvement in the solubility of poly(ether ketone)s in organic solvents such as chloroform, chlorobenzene, and sulfolane. As a result, the conditions for synthesizing these polymers were much milder than those for poly(ether ether ketone). The new copoly(ether ketone)s also showed good tensile properties and reasonable thermal stability. New polyethers containing pyrazine unites were obtained from the cyclization reaction of these copoly(ether ketone)s with hydrazine. The hydrazine cycloderivatives led to an increase in the glass‐transition temperatures and a decrease in solubility in organic solvents. © 2002 Government of Canada. Exclusive world‐wide publication rights in the article have been transferred to Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3449–3454, 2002  相似文献   

6.
Bis(4-oxybenzoic acid) tetrakis(phenoxy) cyclotriphosphazene (IUPAC name: 4-[4-(carboxyphenoxy)-2,4,6,6-tetraphenoxy-1,3,5,2λ5,4λ5,6λ5-triazatriphosphinin-2-yl]oxy-benzoic acid) was synthesized and direct polycondensed with diphenylether or 1,4-diphenoxybenzene in Eaton's reagent at the temperature range of 80–120°C for 3 hours to give aromatic poly(ether ketone)s. Polycondensations at 120°C gave polymer of high molecular weight. Incorporation of cyclotriphosphazene groups in the aromatic poly(ether ketone) backbone greatly enhanced the solubility of these polymers in common organic polar solvents. Thermal stabilities by TGA for two polymer samples of polymer series ranged from 390 to 354°C in nitrogen at 10% weight loss and glass transition temperatures (Tg) ranged from 81.4 to 89.6°C by DSC. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1227–1232, 1998  相似文献   

7.
Novel thermally crosslinkable fluorine‐containing poly(arylene ether ketone)s comprised of 2,3,5, 6‐tetrafluoro‐1,4‐phenylene moiety were synthesized by the termination of polymer chain ends with propargyl ether groups in order to improve solvent resistance. Crosslinking reaction occurred over 250°C through the formation of both chromen ring and polyene structure. This structure change brought about not only the outstanding solvent resistance but also the increase in glass transition temperature (Tg). The cured films also exhibited excellent thermal stability, transparency and hydrophobicity derived from fluorine atoms. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Dynamic rheological measurements were carried out on blends of poly(ether ether ketone) (PEEK)/poly(aryl ether sulfone) (PES) in the melt state in the oscillatory shear mode. The data were analyzed for the fundamental rheological behavior to yield insight into the microstructure of PEEK/PES blends. A variation of complex viscosity with composition exhibited positive–negative deviations from the log‐additivity rule and was typical for a continuous‐discrete type of morphology with weak interaction among droplets. The point of transition showed that phase inversion takes place at composition with a 0.6 weight fraction of PEEK, which agreed with the actual morphology of these blends observed by scanning electron microscopy. Activation energy for flow, for blend compositions followed additive behavior, which indicated that PEEK/PES blends may have had some compatibility in the melt. Variation of the elastic modulus (G′) with composition showed a trend similar to that observed for complex viscosity. A three‐zone model used for understanding the dynamic moduli behavior of polymers demonstrated that PEEK follows plateau‐zone behavior, whereas PES exhibits only terminal‐zone behavior in the frequency range studied. The blends of these two polymers showed an intermediate behavior, and the crossover frequency shifted to the low‐frequency region as the PEEK content in PES increased. This revealed the shift of terminal‐zone behavior to low frequency with an increased PEEK percentage in the blend. Variation of relaxation time with composition suggested that slow relaxation of PEEK retards the relaxation process of PES as the PEEK concentration in the blend is increased because of the partial miscibility of the blend, which affects the constraint release process of pure components in the blend. A temperature‐independent correlation observed in the log–log plots of G′ versus loss modulus (G″) for different blend systems fulfilled the necessary condition for their rheological simplicity. Further, the composition‐dependent correlations of PEEK/PES blends observed in a log–log plot of G′ versus G″ showed that the blends are either partially miscible or immiscible and form a discrete‐continuous phase morphology. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1548–1563, 2004  相似文献   

9.
Novel methyl-substituted aromatic poly (ether sulfone)s and poly (ether ketone)s were synthesized from combinations of 3,3′,5,5′-tetramethylbipheny-4,4′-diol and 2,2′,3,3′,5,5′-hexamethylbiphenyl-4,4′-diol, and 4,4′-dichlorodiphenyl sulfone and 4,4′-difluorobenzo-phenone by nucleophilic aromatic substitution polycondensation. The polycondensations proceeded quantitatively in a N-methyl-2-pyrrolidone-toluene solvent system in the presence of anhydrous potassium carbonate to afford the polymers with inherent viscosities between 0.86 and 1.55 dL/g. The methyl-substituted poly (ether sulfone)s and poly (ether ketone)s showed good solubility in common organic solvents such as chloroform, tetrahydrofuran, pyridine, m-cresol, and N,N-dimethylacetamide. The tetramethyl- and hexamethyl-substituted aromatic polyethers had higher glass transition temperatures than the corresponding unsubstituted polymers, and did not decompose below 350°C in both air and nitrogen atmospheres. The films of the methyl-substituted poly (ether ketone)s became insoluble in chloroform by the irradiation of ultraviolet light, indicating the occurrence of photochemical crosslinking reactions. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
Two sulfonyl group-containing bis(ether anhydride)s, 4,4′-[sulfonylbis(1,4-phenylene)dioxy]diphthalic anhydride ( IV ) and 4,4′-[sulfonylbis(2,6-dimethyl-1,4-phenylene)dioxy]diphthalic anhydride (Me- IV ), were prepared in three steps starting from the nucleophilic nitrodisplacement reaction of the bisphenolate ions of 4,4′-sulfonyldiphenol and 4,4′-sulfonylbis(2,6-dimethylphenol) with 4-nitrophthalonitrile in N,N-dimethylformamide (DMF). High-molar-mass aromatic poly(ether sulfone imide)s were synthesized via a conventional two-stage procedure from the bis(ether anhydride)s and various aromatic diamines. The inherent viscosities of the intermediate poly(ether sulfone amic acid)s were in the ranges of 0.30–0.47 dL/g for those from IV and 0.64–1.34 dL/g for those from Me- IV. After thermal imidization, the resulting two series of poly(ether sulfone imide)s had inherent viscosities of 0.25–0.49 and 0.39–1.19 dL/g, respectively. Most of the polyimides showed distinct glass transitions on their differential scanning calorimetry (DSC) curves, and their glass transition temperatures (Tg) were recorded between 223–253 and 252–288°C, respectively. The results of thermogravimetry (TG) revealed that all the poly(ether sulfone imide)s showed no significant weight loss before 400°C. The methyl-substituted polymers showed higher Tg's but lower initial decomposition temperatures and less solubility compared to the corresponding unsubstituted polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1649–1656, 1998  相似文献   

11.
tert-Butyl substituted poly (aryl ether ketone)s with relatively high molecular weights were prepared by the Ni-catalyzed polymerization of tert-butyl substituted aromatic dichlorides containing ether ketone unit. These polymers were amorphous and soluble in common organic solvents, such as THF, dichloromethane, and chloroform. De-tert-butylation of the polymer by the treatment of trifluoromethanesulfonic acid in the presence of toluene proceeded smoothly and produced crystalline poly (aryl ether ketone). © 1994 John Wiley & Sons, Inc.  相似文献   

12.
The preparation of 2,4-diamino-1,3,5-triazine telechelic poly(ether ketone)s (triazine PEKs) and the formation of supramolecular polymers with dodecyl-(α-ω)-bis(5-methyl-1,3-pyrimidine-2,4-dione) were investigated. Both structures interacted by complementing hydrogen-bonding units present at their respective chain ends, this being reminiscent of triple hydrogen bonding in DNA. The preparation of the triazine PEKs started from hydroxyl-terminated poly(ether ketone)s by a nucleophilic displacement reaction with 2,4-diamino-6-(4-fluorophenyl)-1,3,5-triazine. With this method and molecular weight control via the Carothers equation, a series of triazine PEKs with a complete degree of end-group functionalization were prepared. The structure of the polymers was proven by 13C NMR spectroscopy and matrix-assisted laser desorption/ionization spectroscopy. When mixed as a 1:1 complex in solution with dodecyl-(α-ω)-bis(5-methyl-1,3-pyrimidine-2,4-dione), short triazine PEKs (molecular weight = 5700 or 10,000) showed a temperature-dependent association behavior visible via dynamic NMR spectroscopy. Additional proof of the formation of a supramolecular, hydrogen-bonded network was derived from solid-state NMR spectroscopy, differential scanning calorimetry, and rheological investigations. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 661–674, 2004  相似文献   

13.
Poly(ether ether ketone)s containing alkyl groups were prepared by nucleophilic substitution reaction of alkyl-substituted difluoro diaryl ethers with hydroquinone or by electrophilic substitution reaction of alkyl-substituted diaryl ether with 4,4′-oxydibenzoic acid in PPMA. Polycondensations proceeded smoothly and produced polymers having inherent viscosities up to 0.5-–1.6 dL/g. The polymers were quite soluble in strong acid, dipolar aprotic solvents, and chloroform at room temperature. Thermogravimetry of the polymers showed excellent thermal stability, indicating that 10% weight loses of the polymers were observed in the range above 450°C in nitrogen atmosphere. The glass transition temperatures of the polymers ranged from 128 to 146°C. Furthermore, Polymer 3b functioned as a photosensitive resist of negative type for UV radiation. The resist had a sensitivity of 42 mJ/cm2 and a contrast of 2.5, when it was postbaked at 100°C for 10 min, followed by development with THF/acetone at room temperature. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
Soluble phenol formaldehyde resin containing hydroxymethyl groups has been used to modify sulfonated poly(ether ether ketone) (SPEEK). Modification has been carried out with films containing both the polymers and using dimethyl formamide (DMF) as casting solvent at various temperatures under reduced pressure. Associated solvent and the hydrogen‐bonded by‐product dimethyl amine (DMA) were removed through mild alkali–acid–water treatment. Cured and treated films show good and consistent mechanical properties, water uptake (22–25%), ion‐exchange capacity (1.1–1.5 meq/g) and proton conductivity (125–150 mS/cm) at 30°C and hold promise for application in fuel cells, as indicated by a polarization study in a fuel cell test station. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
A new monomer di(4‐carboxyphenoxy) tetrakis(4‐fluorophenoxy)cyclotriphosphazene 1 was synthesized in a two‐step reaction sequence. The direct polycondensation of 1 and/or 4,4′‐dicarboxydiphenylether with aromatic ethers was carried out in P2O5/methanesulfonic acid (Eaton's reagent) at 120 °C for 3 h to give two series of aromatic poly(ether ketone)s containing cyclotriphosphazene units. The effect of the introduction of the cyclotriphosphazene group on the solubility and thermal properties of these polymers was discussed with relation to the cyclotriphosphazene contents. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2300–2305, 2000  相似文献   

16.
As a novel class of proton exchange membrane materials for use in fuel cells, sulfonated poly(phthalazinone ether ketone)s (SPPEKs) were prepared by the modification of poly(phthalazinone ether ketone). Sulfonation reactions were conducted at room temperature with mixtures of 95–98% concentrated sulfuric acid and 27–33% fuming sulfuric acid with different acid ratios, and SPPEK was obtained with a degree of sulfonation (DS) in the desired range of 0.6–1.2. The presence of sulfonic acid groups in SPPEK was confirmed by Fourier transform infrared analysis, and the DS and structures were characterized by NMR. The introduction of sulfonic groups into the polymer chains increased the glass‐transition temperature above the decomposition temperature and also led to an overall decrease in the decomposition temperature. Membrane films were cast from SPPEK solutions in N,N‐dimethylacetamide. Water uptakes and swelling ratios of SPPEK membrane films increased with DS, and SPPEKs with DS > 1.23 were water‐soluble at 80 °C. Proton conductivity increased with DS and temperature up to 95 °C, reaching 10?2S/cm. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 497–507, 2003  相似文献   

17.
Rhythmic growth of ring‐banded spherulites in blends of liquid crystalline methoxy‐poly(aryl ether ketone) (M‐PAEK) and poly(aryl ether ether ketone) (PEEK) has been investigated by means of differential scanning calorimetry (DSC), polarized light microscopy (PLM), and scanning electron microscopy (SEM) techniques. The measurements reveal that the formation of the rhythmically grown ring‐banded spherulites in the M‐PAEK/PEEK blends is strongly dependent on the blend composition. In the M‐PAEK‐rich blends, upon cooling, an unusual ring‐banded spherulite is formed, which is ascribed to structural discontinuity caused by a rhythmic radial growth. For the 50:50 M‐PAEK/PEEK blend, ring‐banded spherulites and individual PEEK spherulites coexist in the system. In the blends with PEEK as the predominant component, M‐PAEK is rejected into the boundary of PEEK spherulites. The cooling rate and crystallization temperature have great effect on the phase behavior, especially the ring‐banded spherulite formation in the blends. In addition, the effects of M‐PAEK phase transition rate and phase separation rate on banded spherulite formation is discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3011–3024, 2007  相似文献   

18.
Telechelic poly(ether ketone)s (PEKs) and polyisobutylenes (PIBs) were combined to form PIB? PEK? PIB triblock copolymers and (PIB? PEK)n multiblock copolymers via the formation of urea linkages. Monovalent and bivalent amino telechelic PIBs were prepared quantitatively from allyl telechelic PIBs by a newly developed reaction sequence featuring nucleophilic reaction steps. Telechelic PEK? NCO polymers were prepared from the corresponding amino telechelic PEKs via a reaction with diphosgene. The highly reactive PEK? NCO and PIB? NH2 telechelics formed PEK? PIB block copolymers only quantitatively when appropriately reactive primary amino groups were present on the amino telechelic PIBs. The obtained block copolymers were microphase‐separated and featured mostly lamellar structures, as determined by small‐angle X‐ray scattering (SAXS). Temperature‐dependent SAXS measurements revealed ordered polymers in the melt up to 210 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 188–202, 2005  相似文献   

19.
Binary melt‐blended mixtures of two aryl ether ketone polymers (i.e., a new poly(aryl ether ketone) (code name PK99) and poly(ether ether ketone) (PEEK), have been studied. Polymer miscibility in glassy amorphous (or melt) domains has been demonstrated for the binary blend comprising of two aryl‐ether‐ketone‐type semicrystalline polymers. Composition‐dependent, single Tg was observed within full composition range in the PK99/PEEK blends, and the narrow Tg breadth also suggests that the scale of mixing was fine and uniform. To better resolve any possible overlapping Tg's, physical aging was imposed on a comparison set of blend samples for the purpose of improving detectability of overlapped multiple transitions if existing. The result still showed one single Tg. The relative sharp Tg and lack of cloud point transition suggest that the scale of molecular intermixing is good. Phase homogeneity was further confirmed using optical and scanning electron microscopy. The X‐ray diffractograms suggest that isomorphism does not exist in the PK99/PEEK blends and that the crystal forms of the respective polymers remain distinct and unchanged by the miscibility in the amorphous region. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1485–1494, 1999  相似文献   

20.
A new monomer, N,N′‐bis(4‐phenoxybenzoyl)‐p‐phenylenediamine (BPBPPD), was prepared by the condensation of p‐phenylenediamine with 4‐phenoxybenzoyl chloride in N,N‐dimethylacetamide (DMAc). Novel aromatic poly(ether amide amide ether ketone ketone)s (PEAAEKKs) were synthesized by electrophilic Friedel–Crafts solution copolycondensation of BPBPPD with a mixture of terephthaloyl chloride (TPC) and isophthaloyl chloride (IPC), over a wide range of TPC/IPC molar ratios, in the presence of anhydrous aluminum chloride and N‐methylpyrrolidone (NMP) in 1,2‐dichloroethane (DCE). The influences of reaction conditions on the preparation of polymers were examined. The polymers obtained were characterized by different physico–chemical techniques such as FT‐IR, Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), and wide angle X‐ray diffraction (WAXD). The polymers with 70–100 mol% IPC are semicrystalline and have remarkably increased Tgs over commercially available poly(ether ether ketone) (PEEK) and poly(ether ketone ketone) (PEKK) due to the incorporation of amide groups in the main chain. The polymers with 70–80 mol% IPC had not only high Tgs of 209–213°C, but also moderate Tms of 339–348°C, which are suitable for melt processing. The polymers with 70–80 mol% IPC had tensile strengths of 107.5–109.8 MPa, Young's moduli of 2.53–2.69 GPa, and elongations at break of 9–11% and exhibited high thermal stability and good resistance to organic solvents. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号