首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymeric blend ultrafiltration membranes based on cellulose acetate and polysulfone were prepared by phase inversion technique in presence of different additive concentrations, polyvinylpyrrolidone, and characterized in terms of compaction time, pure water flux (PWF), water content, membrane resistance and scanning electron microscopy (SEM). The blend membranes were subjected to separation of proteins and heavy metal ions using polyethylenimine as a complexing agent and the results were discussed. The molecular weight cut off of blend membranes was also reported.  相似文献   

2.
再生纤维素/聚乙烯醇共混膜的研究   总被引:3,自引:0,他引:3  
由纤维素铜氨溶液与不同体积比(1-10%)的聚乙烯醇(PVA)水溶液共混制备了一系列再生纤维素共混膜.扫描电镜结果表明PVA含量大于8%时,该共混膜产生明显相分离.当PVA低于5%时,共混膜相容性较好.膜的结晶度,抗张强度,直角撕裂强度,断裂伸长及耐热性均优于单独用钢氨液制备的再生纤维素膜.此外,用流动速率法和超滤法测定了膜的孔径,渗透性及纯水通量,结果表明共混膜的孔性没有明显变化.本文得出:再生纤维素与5%PVA共混能改善力学性能,并且能保持其生物降解性.  相似文献   

3.

In the development of high performance polymeric membranes, it is essential to design the molecular and morphological characteristics for specific applications. Polysulfone and cellulose acetate of blend membranes with various concentration of polymer pore former, PEG600 were prepared by phase inversion technique and used for ultrafiltration. Polymer blend composition, additive concentration, and casting conditions were optimized. The blend membranes were characterized in terms of compaction, pure water flux, water content, hydraulic resistance and separation of dextran studies. Surface morphology of the embranes was analyzed using scanning electron microscopy at different magnifications. Further, the characterized membranes were attempted for treatment of distillery effluents after secondary treatment and the results are discussed in detail.  相似文献   

4.
ABSTRACT

Asymmetric ultrafiltration membranes were synthesized from locally available polysulfone and polyethersulfone polymers using aprotic solvents and organic additives by the phase inversion method. The membranes were characterized in terms of pure water permeability, separation behavior with respect to polyethylene glycols of various molecular weights and electrolytes. The suitability of using polyethyleneimine (PEI) for selective removal of calcium and magnesium salts by an ultrafiltration process was studied in terms of optimum polymer loading at reasonable permeate flux, irreversible adsorptive fouling of the macromolecular ligand on the polymer as functions of solution pH and ionic strength, and metal ion separation as a function of concentration and pressure. Direct electron microscopic observation of fresh, as well as fouled, membranes are presented.  相似文献   

5.
Hydrophilic polysulfone ultrafiltration (UF) membranes were prepared from blends of cellulose acetate with carboxylated polysulfone of 0.14 degree of carboxylation. The effects of blend polymer composition on compaction, pure water flux, water content and membrane hydraulic resistance (Rm), have been investigated to evaluate the performance of the membranes. The performance of the blend membranes of various blend polymer compositions were compared with that of membranes prepared from pure cellulose acetate and blends of cellulose acetate and pure polysulfone. The hydrophilic cellulose acetate-carboxylated polysulfone blend UF membranes showed better performance compared to membranes prepared from pure cellulose acetate and blends of cellulose acetate and pure polysulfone.  相似文献   

6.
Polysulfone (PS) and polyethersulfone (PES) ultrafiltration membranes were manufactured from a casting solution of the polymer, polyvinylpyrrolidone (PVP) in various solvents [N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide (DMF) and 1‐methyl‐2‐pyrrolidone (NMP)] by immersing the prepared films in different non‐solvents [water, 2‐butanol, mixture of water and 2‐butanol, mixture of water and 2‐propanol (IPA) and mixture of water and 1‐butanol]. The influences of various solvents and non‐solvents on morphology and performance of the prepared membranes were analyzed by scanning electron microscopy (SEM) and separation experiments using milk as the feed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Sodium alginate (SA) is a progressive material for membrane fabrication. The technological development of SA-based membranes has made a significant contribution to the separation techniques, especially in aqueous organic solutions. The outstanding performance of SA is attributed to its outstanding structural flexibility and hydrophilicity. In view of structural characteristics, SA membranes have immense utilization in the pervaporation separation of organics. Among various organics, dehydration of aqueous ethanol is employed as a standard to check the success of pervaporation (PV) membrane. Because ethanol and water have comparable molecular sizes, thus difficult to extract water from aqueous ethanol mixtures than it is for other organics. A literature survey shows that wide-ranging data are available on the PV performance of SA and its modified membranes. In this context, the present review addresses the recent advances made in SA membranes for enhanced ethanol dehydration performance during the last decade. Available data since 2010 has been compiled for grafted, crosslinked, blend, mixed matrix, and composite hybrid sodium alginate membranes in terms of separation factor, permeation flux, and pervaporation separation index PSI. The data are assessed with reference to the effect of feed composition, membrane selectivity, flux, and swelling behavior.  相似文献   

8.
ABSTRACT

Membranes based on cellulose acetate used in ultrafiltration applications lack good, chemical, mechanical and thermal resistance. In order to prepare membranes with improved properties, modification of cellulose acetate with epoxy resin through solution blending was attempted. In the present work, the membrane casting solutions with different polymer blend compositions of cellulose acetate and diglycidyl ether of bisphenol-A (DGEBA) were prepared at 30±2°C. The maximum percent compatibility of the two polymers, cellulose acetate and diglycidyl ether of bisphenol-A, was estimated to be 60/40%. Ultrafiltration blend membranes based on various blend compositions were prepared, characterized in terms of compaction, pure water flux, water content, membrane hydraulic resistance and molecular weight cut-off. The application of these membranes, in rejection of proteins of various molecular weights, are discussed.  相似文献   

9.
pH‐sensitive poly (vinylidene fluoride) (PVDF)/poly (acrylic acid) (PAA) microgels membranes are prepared by phase inversion of the N, N‐dimethylformamide solution containing PAA microgels and PVDF in aqueous solution. The composition and structure of the blend membrane are investigated by Fourier transform infrared spectra, X‐ray photoelectron spectroscopy measurements, thermo gravimetric analysis, field‐emission scanning electron microscope and atomic force microscope. The results indicate the surface and cross section of the blend membranes have a porous structure with PAA microgels immobilized inside the pore and on the membrane surface. The blend PVDF membranes exhibit pH‐sensitive water flux, with the most drastic change in permeability observed between pH 3.7 and 6.3. The blend membranes are fouled by bovine serum albumin, and their antifouling property is enhanced by increasing PAA microgels, mainly derived from the improved hydrophilic property. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The separation of metals from aqueous streams by continuous polymer enhanced ultrafiltration (PEUF) was simulated in order to understand, evaluate and optimize the process feasibility. The model allows one to examine the influence of physico-chemical and operation variables on the metal reduction and productivity of the treated water stream. For a given metal–polymer system, the computations revealed that the most influential operation variables are the acid and base reagents expended on the process, the amount of polymer used and the recycling stream flow, which are represented by the dimensionless parameters af, pp and ro, respectively. Two of them can be free chosen while the third one is determined by a fixed treated water production and metal reduction. The selection of af and pp values should be a compromise between the costs of the reagents to regenerate the polymer and the energy spent to achieve a permeate flow. If process efficiency requirements are more exigent, higher values of af or pp are required.  相似文献   

11.
Since many years synthetic membranes have been used in reverse osmosis or ultrafiltration for the separation of aqueous mixtures. More recently the separation of gases and vapors by selective membrane permeation has gained significant technical and commercial interest. The recovery of hydrogen from petrochemical purge gases and ammonia production processes or the removal of CO2 from natural gas by selective membrane permeation are today state of the art procedures. The recovery of organic solvents from waste air streams is another very promising application of synthetic membranes. In this paper the main parameters determining the performance of a membrane in gas and vapor separation are described. The requested intrinsic properties of the polymer to be useful as a barrier for a selective gas and vapor transport are discussed. The preparation of appropriate membranes is described. Their performance in practicle applications is illustrated in selected examples.  相似文献   

12.
Commercial ultrafiltration membranes have proliferated globally for water treatment. However, their pore sizes are too large to sieve gases. Conjugated microporous polymers (CMPs) feature well‐developed microporosity yet are difficult to be fabricated into membranes. Herein, we report a strategy to prepare molecular‐sieving membranes by partitioning the mesoscopic channels in water ultrafiltration membrane (PSU) into ultra‐micropores by space‐confined polymerization of multi‐functionalized rigid building units. Nine CMP@PSU membranes were obtained, and their separation performance for H2/CO2, H2/N2, and H2/CH4 pairs surpass the Robeson upper bound and rival against the best of those reported membranes. Furthermore, highly crosslinked skeletons inside the channels result in the structural robustness and transfer into the excellent aging resistance of the CMP@PSU. This strategy may shed light on the design and fabrication of high‐performance polymeric gas separation membranes.  相似文献   

13.
Polyethersulfone (PES)/quaternary ammonium polysulfone (QAPSf) blend ultrafiltration (UF) membranes with positive charge were fabricated by nonsolvent induced phase separation (NIPS) for use in dye and salt selective separation. QAPSf was synthesized by nucleophilic substitution with chloromethylated polysulfone (CMPSf). The effect of the PES/QAPSf mass ratio on the morphology and performance of blend UF membranes were studied. The membranes' zeta potentials gradually changed from negative to positive with decreases in the PES/QAPSf mass ratio. At PES/QAPSf mass ratios of 30:70 and 10:90, the zeta potentials of the membranes reached +1.8 mV and + 5.9 mV, respectively. Additionally, the contact angles of the membranes decreased from 74° to 52° as the QAPSf content increased from 0 wt% to 90 wt%. Furthermore, the membrane with a PES/QAPSf mass ratio of 30:70 showed a high water permeance (181.4 LMH bar−1) and excellent dye and salt selective separation performance. The rejection ratios reached 99.1%, 87.8%, 99.6%, and 92.4% for dyes Congo red, methyl blue, Alixin blue 8GX, and basic blue 24, respectively, while those for salts Na2SO4, MgSO4, MgCl2, and NaCl were ≤ 10%. In addition, the PES/QAPSf membranes showed excellent antifouling performance and good operating stability with dye-salt mixtures of various pHs and salt concentrations.  相似文献   

14.
The self‐assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra‐ to nanofiltration and decrease the pore size of self‐assembled block copolymer membranes to below 5 nm without post‐treatment. It is now reported that the self‐assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol?1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux.  相似文献   

15.
The copolymer of acrylic acid and acrylonitrile has been synthesized and pervaporation properties of the copolymeric membranes have been investigated. In order to elucidate the influence of membrane-permeate interaction on the pervaporation of water-ethanol mixtures and to prepare much improved membranes, the membranes have been treated with alkali metal, alkali earth metal and transition metal salt aqueous solutions. The treated membranes (ionized membranes) exhibited higher separation factors than the untreated membranes. The separation factors of various alkali metal cation membranes decreased in the following order : Li~+>Na~+>K~+, and the permeation rates showed an opposite tendency. The dependence of pervaporation behavior on the copolymer composition ,feed concentration and operating temperature have been studied with both ionized and non-ionized membranes. The apparent activation energies of water and ethanol permeation were calculated.  相似文献   

16.
The overall objective of this investigation is to achieve high‐performance membranes with respect to flux and rejection characteristics, with an interplay of blending polymers having desired qualities. Thus, cellulose diacetate and polyethersulfone as candidate materials, in the presence of polyethylene glycol 600 as a pore forming agent, were blended in 100/0, 95/5, 90/10, 85/15, 80,20 and 75/25% compositions using N,N′‐dimethylformamide as solvent and membranes were prepared by the phase inversion technique. Polymer blend composition, additive concentration, and casting and gelation conditions were standardized for the preparation of asymmetric membranes with various pore statistics and morphology. These blend membranes were characterized for compaction in ultrafiltration experiments at 414 kPa pressure in order to attain steady state flux and is reached within 4–5 hr. The pure water flux was measured at 345 kPa pressure and is determined largely by the composition of polyethersulfone and additive concentration. The flux was found to reach the highest values of 66.5 and 275 1/(cm2 hr) at 0 and 10 wt% additive concentrations respectively, at 25% SPS content of the blend. Membrane hydraulic resistance derived by measuring water flux at various transmembrane pressure and by using an algorithm was found to be inversely proportional to pure water flux. Water content is estimated by simple drying and weighing procedures and found proportional to pure water flux for all the membranes. The molecular weight cut‐offs (MWCOs) of different membranes were determined with proteins of different molecular weights and found to vary from 20–69 kDa (globular proteins) depending on the PEG and SPS content in the casting dope. Skin surface porosity of the membranes were analyzed by scanning the frozen membrane samples using scanning electron microscopy (SEM) at different magnifications. The surface porosity is in direct correlation to the MWCO derived from solute retention experiments. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Polyphenylsulfone/multiwalled carbon nanotubes/polyvinylpyrrolidone/1-methyl-2-pyrrolidone mixed matrix ultrafiltration flat-sheet membranes were fabricated via phase inversion process to inspect the heavy metals separation efficacy from aqueous media. Fabricated membranes cross-sectional morphological changes and the topographical alterations were assessed with Scanning electron microscopy (SEM) and atomic force microscopy (AFM). Particularly, MWCNTs assisted membranes exhibited better permeability ability as well as heavy metal removal enactment than virgin membrane. The dead-end filter unit was engaged in current research to examine the permeability and heavy metal removal competence of membranes. With the continuous enhancement of MWCNTs wt% in a polymer matrix, significant enhancement was observed with pure water flux study, from 41.69 L/m2 h to >185 L/m2 h as well as with the heavy metals separation study. Added additive MWCNTs can impact the pore sizes in membranes. The heavy metal separation results achieved, the membrane with 0.3 wt% of MWCNTs (PCNT-3) exhibited >98%, >76% and >72% for Pb2+, Hg2+ and Cd2+ ions, respectively. Overall, MWCNTs introduced PPSU membranes exposed best outcomes with heavy metals contained wastewater treatment.  相似文献   

18.
The blend membranes were prepared from cellulose/konjac glucomannan (KGM) cuprammonium solution by coagulating with aqueous 10 wt% NaOH solution, 20°C and 40°C water, respectively. Miscibility, pore morphology, structure, water permeability and mechanical properties of the blend membranes were investigated. The complex forms of cellulose/KGM in the mixed solutions, the effect of various coagulants and the percent content of KGM (wKGM) on the structure and properties of the blend membrane are discussed. SEM and mechanical relaxation analysis indicate that the blend membranes are miscible in the range of 0–30 wt% of wKGM. When wKGM was smaller than 20 wt%, the tensil strength of the blend membrane coagulated by alkali aqueous solution was enhanced, corresponding to homogeneous structure and small pore size. However, blend membranes having a larger pore size (366 nm by SEM) and water permeability (560 ml/m2 h mmHg) were obtained by coagulating the cellulose/KGM (70:30) cuprammonium solution with 40°C water, where ca. 20% of KGM as pore former were removed from the membrane.  相似文献   

19.
Stimuli‐responsive nanoporous membranes have attracted increasing interest in various fields due to their abrupt changes of permeation/separation in response to the external environment. Here we report ultrathin pH‐sensitive nanoporous membranes that are easily fabricated by the self‐assembly of poly(acrylic acid) (PAA) in a metal hydroxide nanostrand solution. PAA‐adsorbed nanostrands (2.5–5.0 nm) and PAA‐CuII nanogels (2.0–2.5 nm) grow competitively during self‐assembly. The PAA‐adsorbed nanostrands are deposited on a porous support to fabricate ultrathin PAA membranes. The membranes display ultrafast water permeation and good rejection as well as significant pH‐sensitivity. The 28 nm‐thick membrane has a water flux decrease from 3740 to 1350 L m?1 h?1 bar?1 (pH 2.0 to 7.0) with a sharp decrease at pH 5.0. This newly developed pH‐sensitive nanoporous membranes may find a wide range of applications such as controlled release and size‐ and charge‐selective separation.  相似文献   

20.
《先进技术聚合物》2018,29(9):2467-2476
Poly (caprolactone) membranes with addition of different poly (ethylene glycol) concentrations were prepared for separation of water/isopropanol azeotropic mixture by pervaporation process. Different characterization tests including Fourier transform infrared, scanning electron microscopy, water contact angle, and thermogravimetric analysis were carried out on the prepared membranes. In addition, the effect of poly (ethylene glycol) PEG content on the swelling degree and the performance of the prepared membranes in pervaporation process were investigated. According to the obtained results, all the membranes were water selective and the blend membrane containing 3 wt% PEG exhibited the best pervaporation performance with a water flux of 0.517 kg/m2 hour and separation factor of 1642 at the ambient temperature. Hydrophilicity improvement of the blend membranes was confirmed by constant decrease in water contact angle of the membranes as PEG content increased in the casting solution. Scanning electron microscopy cross‐sectional images indicated that the blend membranes containing PEG had a closed cellular structure. Furthermore, mechanical and thermal properties of the membranes decreased by adding PEG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号