首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Method for synthesis of UO2+x and uranium–thorium mixed oxides by using sol–gel method and mechanochemical activation is proposed. The synthesis of UO2+x and solid solutions with equal amount of metals or enriched to one of them is performed by external gelation process, thermal decomposition of the sol–gel products in air and subsequent mechanochemical activation in air in stainless steel vessels. The crystal structures of the obtained oxides before and after the mechanochemical treatment are analysed by the use of X-ray diffraction method. Quantitative phase analysis and calculations of the size of the crystallites, lattice parameters, and densities of the oxides are performed by BRASS program for Rietveld calculation. The proposed method leads to decrease of the lattice parameters and thus to higher density of the obtained oxides with crystallites size in the range of 12–16 nm.  相似文献   

2.
Sol–gel auto-combustion method is adopted to prepare solid solutions of nano-crystalline spinel oxides, (Ni1 − x Zn x )Fe2O4 (0 ≤ x ≤ 1).The phases are characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy, selected area electron diffraction, and Brunauer–Emmett–Teller surface area. The cubic lattice parameters, calculated by Rietveld refinement of XRD data by taking in to account the cationic distribution and affinity of Zn ions to tetrahedral sites, show almost Vegard’s law behavior. Galvanostatic cycling of the heat-treated electrodes of various compositions are carried in the voltage range 0.005–3 V vs. Li at 50 mAg−1 up to 50 cycles. Phases with high Zn content x ≥ 0.6 showed initial two-phase Li-intercalation in to the structure. Second-cycle discharge capacities above 1,000 mAh g−1 are observed for all x. However, drastic capacity fading occurs in all cases up to 10–15 cycles. The capacity fading between 10 and 50 cycles is found to be greater than 52% for x ≤ 0.4 and for x = 0.8. For x = 0.6 and x = 1, the respective values are 40% and 18% and a capacity of 570 and 835 mAh g−1 is retained after 50 cycles. Cyclic voltammetry and ex situ transmission electron microscopy data elucidate the Li-cycling mechanism involving conversion reaction and Li–Zn alloying–dealloying reactions.  相似文献   

3.
One of the key objectives in fuel-cell technology is to improve the performance of the anode catalyst for the alcohol oxidation and reduce Pt loading. Here, we show the use of six different electrocatalysts synthesized by the sol–gel method on carbon powder to promote the oxidation of methanol in acid media. The catalysts Pt–PbO x and Pt–(RuO2–PbO x ) with 10% of catalyst load exhibited significantly enhanced catalytic activity toward the methanol oxidation reaction as compared to Pt–(RuO2)/C and Pt/C electrodes. Cyclic voltammetry studies showed that the electrocatalysts Pt–PbO x /C and Pt–(RuO2–PbO x )/C started the oxidation process at extremely low potentials and that they represent a good novelty to oxidize methanol. Furthermore, quasi-stationary polarization experiments and cronoamperometry studies showed the good performance of the Pt–PbO x , Pt–(RuO2–PbO x )/C and Pt–(RuO2–IrO2)/C catalysts during the oxidation process. Thus, the addition of metallic Pt and PbO x onto high-area carbon powder, by the sol–gel route, constitutes an interesting way to prepare anodes with high catalytic activity for further applications in direct methanol fuel cell systems.  相似文献   

4.
Summary.   Epitaxial thin films of Ca(Si 1 − x Ge x )2 with 0 < x ≤ 1 are found to react with the moisture of ambient atmosphere to form new Ca-Si-Ge-O-H compounds which were studied by X-ray diffraction, energy dispersive X-ray analysis, infrared absorption, and thermally induced hydrogen desorption measurements. Pure CaGe2 forms the polygermyne calcium hydroxide intercalation compound Ca(OH)2(GeH)2 upon exposure to humidity, with a trigonal tr6 crystal lattice with a = 4.00(1) and c = 65.3(1)?. In mixed Ca(Si 1 − x Ge x )2 with smaller Ge content, the group-14 layers are subject to intense oxidation leading to decreased crystallinity. The products exhibit characteristic colours and intense photoluminescence, the peak luminescence varying from 1.35 eV for the reaction product of Ca(Si0.3Ge0.7)2 to 2.6 eV for that of Ca(Si0.5Ge0.5)2. Received March 12, 2001. Accepted (revised) May 2, 2001  相似文献   

5.
A5–4xZrxZr(PO4)3 (A=Na, K;0≤x≤1.25), Na1-xCd0.5xZr2(PO4)3 (0≤x≤1), Na5–xCd0.5xZr(PO4)3 (0≤x≤4) compositions which belong to the NZP structural family were synthesized using the sol-gel method. The lattice thermal expansion of members of these rows were determined up to 600°C by high-temperature X-ray diffractometry. The axial thermal expansion coefficients change from -5.8·10-6to 7.5·10-6 °C-1a) and from 2.6·10–6 to 22·10–6 °C-1c). These results, in addition to those for other NZP compounds allow us to explain their low thermal expansion. The mechanism can be attributed to strongly bonded three-dimensional network structure, the existence of structural holes capable to damp some of the thermal vibrations and anisotropyin the thermal expansion of the lattice. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Spinel powders of LiMn2−x RE x O4 (RE = La, Ce, Nd, Sm; 0 ≤ x ≤ 0.1) have been synthesized by solid-phase reaction. The structure and electrochemical properties of these electrode materials were characterized by X-ray diffraction (XRD), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and charge–discharge experiment. The part substitution of rare-earth element RE for Mn in LiMn2O4 decreases the lattice parameter, resulting in the improvement of structural stability, and decreases the charge transfer resistance during the electrochemical process of LiMn2O4. As a result, the cycle ability, 55 °C high-temperature and high-rate performances of LiMn2−x RE x O4 electrode materials are significantly improved with increasing RE addition, compared to the pristine LiMn2O4.  相似文献   

7.
The minimum concentration of niobium to stabilize the fluorite-type f.c.c. phase in the Bi2O3–Nb2O5 oxide system at temperatures below 996 K was ascertained to be about 10 mol%. Thermal expansion, electrical conductivity and crystal lattice parameters of the Bi(Nb)O1.5+δ solid solutions decrease with increasing niobium content. Thermal expansion coefficients were calculated from the dilatometric data to be (10.314.5)×10−6 K−1 at temperatures in the range 300–700 K and (17.526.0)×10−6 K−1 at 700–1100 K. The conductivity of the Bi1− x Nb x O1.5+δ ceramics is predominantly ionic. The p-type electronic transference numbers of the Bi(Nb)O1.5+δ solid solutions in air were determined to be less than 0.1. Annealing at temperatures below 900 K results in a sharp decrease in conductivity of the Bi1− x Nb x O1.5+δ ceramics. Received: 18 August 1997 / Accepted: 20 October 1997  相似文献   

8.
The electrochemical insertion of lithium in the spinel-type manganite with the formula ZnNi y Mn2– y O4 has been studied. The galvanostatic discharge curves show that the best performance is obtained for y = 0.25, where a tetragonal to cubic structural transformation occurs. The thermodynamics and kinetics of the process of insertion of the lithium into the tetragonal spinel Li x ZnNi0.25Mn1.75O4 (x = 0.05–1.3) have been studied. The molar thermodynamic quantities, such as enthalpy, entropy and free energy determined by EMF-T measurements, varied with the lithium concentration in the oxide structure, and a major variation was observed around x = 0.8. The chemical diffusion coefficient of lithium in these spinels was also determined. Structural analysis, degree of oxidation and magnetic susceptibility measurements were carried out for the lithiated oxides in order to obtain the cationic distribution as a function of x. It has been possible to demonstrate that, upon lithium insertion, Mn4+ ions on B sites are reduced to Mn3+ and then to Mn2+. A cooperative Jahn-Teller effect is present in these spinel manganese-nickel oxides. Received: 4 February 1997 / Accepted: 11 April 1997  相似文献   

9.
A quaternary super-ion-conducting system, 20CdI2 − 80[xAg2O − y(0.7V2O5 − 0.3B2O3)] where 1 ≤ x/y ≤ 3, has been prepared by melt quenching technique. The electrical conductivity measured was the order of 10−4  S/cm at room temperature. The values of silver-ion transport number obtained by electromotive force technique are nearly unity. The thermoelectric power and electrochemical studies were done on the CdI2–Ag2O–V2O5–B2O3 system. The discharge and polarization characteristics were examined for different cathodes to evaluate the utility of these cells as power sources for low energy applications.  相似文献   

10.
Nano-composites of SnO(V2O3) x (x = 0, 0.25, and 0.5) and SnO(VO)0.5 are prepared from SnO and V2O3/VO by high-energy ball milling (HEB) and are characterized by X-ray diffraction (XRD), scanning electron microscopy, and high-resolution transmission electron microscopy techniques. Interestingly, SnO and SnO(VO)0.5 are unstable to HEB and disproportionate to Sn and SnO2, whereas HEB of SnO(V2O3) x gives rise to SnO2.VO x . Galvanostatic cycling of the phases is carried out at 60 mA g−1 (0.12 C) in the voltage range 0.005–0.8 V vs. Li. The nano-SnO(V2O3)0.5 showed a first-charge capacity of 435 (±5) mAh g−1 which stabilized to 380 (±5) mAh g−1 with no noticeable fading in the range of 10–60 cycles. Under similar cycling conditions, nano-SnO (x = 0), nano-SnO(V2O3)0.25, and nano-SnO(VO)0.5 showed initial reversible capacities between 630 and 390 (±5) mAh g−1. Between 10 and 50 cycles, nano-SnO showed a capacity fade as high as 59%, whereas the above two VO x -containing composites showed capacity fade ranging from 10% to 28%. In all the nano-composites, the average discharge potential is 0.2–0.3 V and average charge potential is 0.5–0.6 V vs. Li, and the coulombic efficiency is 96–98% after 10 cycles. The observed galvanostatic cycling, cyclic voltammetry, and ex situ XRD data are interpreted in terms of the alloying–de-alloying reaction of Sn in the nano-composite “Sn-VO x -Li2O” with VO x acting as an electronically conducting matrix.  相似文献   

11.
The complexation behavior of eight M–(buffer) x –(OH) y systems involving two divalent ions (cobalt and nickel) and four zwitterionic biological buffers (AMPSO, DIPSO, TAPS and TAPSO) were characterized. Complex formation was detected for all eight M–(buffer) x –(OH) y systems studied, but fully defined final models were obtained for only four of these systems. For systems involving cobalt or nickel with AMPSO or TAPS, a complete characterization of the systems was not possible in the studied buffer pH-range. Metal complexation was studied by glass-electrode potentiometry (GEP) and UV-Vis spectroscopy at 25.0 °C and I=0.1 mol⋅dm−3 KNO3 ionic strength. For the Ni–(L) x –(OH) y and Co–(L) x –(OH) y systems, with L = TAPSO or DIPSO, the proposed final models and overall stability constants were obtained by combining results from both techniques. For the Ni–(L) x –(OH) y systems, the measured values of the stability constants are log 10 β NiL=3.0±0.1 and log 10 β NiL2=4.8±0.1 for L = TAPSO, and log 10 β NiL=2.7±0.1 and log 10 β NiL2=4.6±0.1 for L = DIPSO. For the Co–(L) x –(OH) y systems, the overall stability constants are log 10 β CoL=2.2±0.1, log 10 β CoL2=3.6±0.2 and log 10 β CoL(OH)=7.6±0.1 for L = TAPSO, and log 10 β CoL=2.0±0.1 and log 10 β CoL(OH)=7.8±0.1 for L = DIPSO. For both buffers, the CoL(OH) species is characterized by a major structural rearrangement.  相似文献   

12.
A series of mixed metal hydroxide (Ni x Mn x Co(1–2x)(OH)2) precursors for the preparation of lithiated mixed metal oxides (LiNi x Mn x Co(1–2x)O2) were prepared using a novel coprecipitation approach based on the thermal decomposition of urea. Three different methods were used to achieve the temperature required to decompose urea and subsequently precipitate the hydroxides. The first two methods consisted of either a hydrothermal or microwave-assisted hydrothermal synthesis at 180 °C and elevated pressures. The final method was an aqueous reflux at 100 °C. A complete series (x = 0.00–0.50) was prepared for each method and fully characterized before and after converting the materials to lithiated metal oxides (LiNi x Mn x Co(1–2x)O2). We observed the formation of a complex structure after the coprecipitation of the hydroxides. Scanning electron micrographs images demonstrate that the morphology and particle size of the hydroxide particles varied significantly from x = 0.00–0.50 under hydrothermal synthesis conditions. There is also a significant change in particle morphology as the urea decomposition method is varied. The X-ray diffraction profiles of the oxides synthesized from these hydroxide precursors all demonstrated phase pure oxides that provided good electrochemical performance.  相似文献   

13.
The solid solubility limit of Ce in Nd2–x Ce x CuO4 ± δ , prepared by sol–gel process, is established up to x = 0.2. The transition from negative temperature coefficient to positive temperature coefficient, within the solid solubility region, is observed at 620 °C. The area-specific-resistance (ASR) is optimized for electrochemical cell sintered at 800 °C. ASR enhances with increase in sintering temperature of cell. ASR value of 0.93 ohm cm2 at 700 °C, determined by electrochemical impedance spectroscopy is comparable against that by voltage versus current (V–I) characteristics at 0.98 ohm cm2 at the same temperature. Electrochemical performance and ASR of Nd1.8Ce0.2CuO4 ± δ is improved when prepared by sol–gel route over solid-state reaction, which is attributed to uniform size and shape of nanocrystalline grains.  相似文献   

14.
LiMn2O4-based spinels are of great interest as positive electrode materials for lithium ion batteries. LiCo x Mn2−x O4 (x = 0.0, 0.1, 0.2, 0.3, and 0.4) spinel phases have been synthesized by novel citric acid-modified microwave-assisted sol–gel method. The structural properties of the synthesized products have been investigated by X-ray powder diffraction and scanning electron microscopy. To improve the recharge capacity of Li/LiCo x Mn2−x O4 cells, the electrochemical features of LiCo x Mn2−x O4 compounds have been evaluated as positive electrode materials. The structural properties of Co-doped oxides are very similar to LiMn2O4 electrode. Techniques like cyclic voltammetry, charge–discharge and cycle life are also used to characterize the LiCo x Mn2−x O4 (x = 0.0, 0.1, 0.2, 0.3, and 0.4) electrodes.  相似文献   

15.
Perovskite-type compounds, Li x La(1− x )/3NbO3 and (Li0.25La0.25)1− x Sr0.5 x NbO3 as lithium ionic conductors, were synthesized by a solid-state reaction. From powder X-ray diffraction, the solid solution ranges of the two compounds were determined to be 0≤x≤0.25 and 0≤x≤0.125, respectively. In the Li x La(1− x )/3NbO3 system, the ionic conductivity of lithium at room temperature, σ25, exhibited a maximum value of 4.7 × 10−5 S · cm−1 at x = 0.10. However, because of the decrease in the lattice parameters with increasing Li concentration , σ25 of the samples decreased with increasing x from 0.10 to 0.25. Also, in the (Li0.25La0.25)1− x Sr0.5 x NbO3 system, the lattice parameter increased with the increase of Sr concentration and the σ25 achieved a maximum (7.3 × 10−5 S · cm−1 at 25 °C) at x = 0.125. Received: 12 September 1997 / Accepted: 15 November 1997  相似文献   

16.
Mesoporous Mn–Ni oxides with the chemical compositions of Mn1-x Ni x O δ (x = 0, 0.2, and 0.4) were prepared by a solid-state reaction route, using manganese sulfate, nickel chloride, and potassium hydroxide as starting materials. The obtained Mn–Ni oxides, mainly consisting of the phases of α- and γ-MnO2, presented irregular mesoporous agglomerates built from ultra-fine particles. Specific surface area of Mn1–x Ni x O δ was 42.8, 59.6, and 84.5 m2 g−1 for x = 0, 0.2, and 0.4, respectively. Electrochemical properties were investigated by cyclic voltammetry and galvanostatic charge/discharge in 6 mol L−1 KOH electrolyte. Specific capacitances of Mn1-x Ni x O δ were 343, 528, and 411 F g−1 at a scan rate of 2 mV s−1 for x = 0, 0.2, and 0.4, respectively, and decreased to 157, 183, and 130 F g−1 with increasing scan rate to 100 mV s−1, respectively. After 500 cycles at a current density of 1.24 A g−1, the symmetrical Mn1–x Ni x O δ capacitors delivered specific capacitances of 160, 250, and 132 F g−1 for x = 0, 0.2, and 0.4, respectively, retaining about 82%, 89%, and 75% of their respective initial capacitances. The Mn0.8Ni0.2O δ material showed better supercapacitive performance, which was promising for supercapacitor applications.  相似文献   

17.
lid solutions Ti1−x M x O2−x/2 in the anatase and rutile forms were obtained from the precursors Ti1−x M x (OCH2CH2O)2−x/2 at T = 450–900 °C. The temperature and concentration dependence of the phase transformation of anatase to rutile in Ti1−x M x O2−x/2 was investigated by Raman spectroscopy. It was shown that the anatase phase is stabilized most effectively by the Eu3+ dopant.  相似文献   

18.
Nanocrystalline Ru1 − x Ni x O2 − y with 0.02 < x < 0.30 were prepared by a sol–gel approach at temperatures between 300 and 600 °C. XRD patterns of the prepared materials indicate a single-phase character conforming to a tetragonal syngony. All prepared materials are sufficiently stable in acid media and show activity towards oxygen evolution. The activity towards oxygen evolution reaction of the materials with constant chemical composition decreases with increasing particle size. The increasing Ni content enhances the electrocatalytic activity in a stepwise manner with abrupt changes for materials containing approximately 5% or 15% of the cationic sites substituted by Ni.  相似文献   

19.
The formation constants of dioxouranium(VI)-2,2′-oxydiacetic acid (diglycolic acid, ODA) and 3,6,9-trioxaundecanedioic acid (diethylenetrioxydiacetic acid, TODA) complexes were determined in NaCl (0.1≤I≤1.0 mol⋅L−1) and KNO3 (I=0.1 mol⋅L−1) aqueous solutions at T=298.15 K by ISE-[H+] glass electrode potentiometry and visible spectrophotometry. Quite different speciation models were obtained for the systems investigated, namely: ML0, MLOH, ML22−, M2L2(OH), and M2L2(OH)22−, for the dioxouranium(VI)–ODA system, and ML0, MLH+, and MLOH for the dioxouranium(VI)–TODA system (M=UO22+ and L = ODA or TODA), respectively. The dependence on ionic strength of the protonation constants of ODA and TODA and of both metal-ligand complexes was investigated using the SIT (Specific Ion Interaction Theory) approach. Formation constants at infinite dilution are [for the generic equilibrium pUO22++q(L2−)+rH+ (UO22+) p (L) q H r (2p−2q+r);β pqr ]: log 10 β 110=6.146, log 10 β 11−1=0.196, log 10 β 120=8.360, log 10 β 22−1=8.966, log 10 β 22−2=3.529, for the dioxouranium(VI)–ODA system and log β 110=3.636, log 10 β 111=6.650, log 10 β 11−1=−1.242 for dioxouranium(VI)–TODA system. The influence of etheric oxygen(s) on the interaction towards the metal ion was discussed, and this effect was quantified by means of a sigmoid Boltzman type equation that allows definition of a quantitative parameter (pL 50) that expresses the sequestering capacity of ODA and TODA towards UO22+; a comparison with other dicarboxylates was made. A visible absorption spectrum for each complex reaching a significant percentage of formation in solution (KNO3 medium) has been calculated to better characterize the compounds found by pH-metric refinement.  相似文献   

20.
A feasibility and basic study to find a possibility to develop such a process for recovering U alone from spent fuel by using the methods of an oxidative leaching and a precipitation of U in high alkaline carbonate media was newly suggested with the characteristics of a highly enhanced proliferation-resistance and more environmental friendliness. This study has focused on the examination of an oxidative leaching of uranium from SIMFUEL powders contained 16 elements (U, Ce, Gd, La, Nd, Pr, Sm, Eu, Y, Mo, Pd, Ru, Zr, Ba, Sr, and Te) using a Na2CO3 solution with hydrogen peroxide. U3O8 was dissolved more rapidly than UO2 in a carbonate solution. However, in the presence of H2O2, we can find out that the leaching rates of the reduced SIMFUEL powder are faster than the oxidized SIMFUEL powder. In carbonate solutions with hydrogen peroxide, uranium oxides were dissolved in the form of uranyl peroxo-carbonato complexes. UO2(O2) x (CO3) y 2−2x−2y , where x/y has 1/2, 2/1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号