首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We prove that RANDOM EDGE, the simplex algorithm that always chooses a random improving edge to proceed on, can take a mildly exponential number of steps in the model of abstract objective functions (introduced by Williamson Hoke [Completely unimodal numberings of a simple polytope, Discrete Appl. Math. 20 (1988) 69-81.] and by Kalai [A simple way to tell a simple polytope from its graph, J. Combin. Theory Ser. A 49(2) (1988) 381-383.] under different names). We define an abstract objective function on the n-dimensional cube for which the algorithm, started at a random vertex, needs at least exp(const·n1/3) steps with high probability. The best previous lower bound was quadratic. So in order for RANDOM EDGE to succeed in polynomial time, geometry must help.  相似文献   

2.
We present explicit constructions of centrally symmetric polytopes with many faces: (1) we construct a d-dimensional centrally symmetric polytope P with about 3 d/4 ≈ (1.316) d vertices such that every pair of non-antipodal vertices of P spans an edge of P, (2) for an integer k ≥ 2, we construct a d-dimensional centrally symmetric polytope P of an arbitrarily high dimension d and with an arbitrarily large number N of vertices such that for some 0 < δ k < 1 at least (1 ? (δ k ) d )( k N ) k-subsets of the set of vertices span faces of P, and (3) for an integer k ≥ 2 and α > 0, we construct a centrally symmetric polytope Q with an arbitrarily large number of vertices N and of dimension d = k 1+o(1) such that at least $(1 - k^{ - \alpha } )(_k^N )$ k-subsets of the set of vertices span faces of Q.  相似文献   

3.
Let G be a connected graph and S a nonempty set of vertices of G. A Steiner tree for S is a connected subgraph of G containing S that has a minimum number of edges. The Steiner interval for S is the collection of all vertices in G that belong to some Steiner tree for S. Let k≥2 be an integer. A set X of vertices of G is k-Steiner convex if it contains the Steiner interval of every set of k vertices in X. A vertex xX is an extreme vertex of X if X?{x} is also k-Steiner convex. We call such vertices k-Steiner simplicial vertices. We characterize vertices that are 3-Steiner simplicial and give characterizations of two classes of graphs, namely the class of graphs for which every ordering produced by Lexicographic Breadth First Search is a 3-Steiner simplicial ordering and the class for which every ordering of every induced subgraph produced by Maximum Cardinality Search is a 3-Steiner simplicial ordering.  相似文献   

4.
We prove that the number of vertices of a polytope of a particular kind is exponentially large in the dimension of the polytope. As a corollary, we prove that an n-dimensional centrally symmetric polytope with O(n) facets has {ie1-1} vertices and that the number of r-factors in a k-regular graph is exponentially large in the number of vertices of the graph provided k≥2r+1 and every cut in the graph with at least two vertices on each side has more than k/r edges.  相似文献   

5.
We prove that the cd-index of a convex polytope satisfies a strong monotonicity property with respect to the cd-indices of any face and its link. As a consequence, we prove for d-dimensional polytopes a conjecture of Stanley that the cd-index is minimized on the d-dimensional simplex. Moreover, we prove the upper bound theorem for the cd-index, namely that the cd-index of any d-dimensional polytope with n vertices is at most that of C(n,d), the d-dimensional cyclic polytope with n vertices. Received September 29, 1998; in final form February 8, 1999  相似文献   

6.
We consider compact hyperbolic Coxeter polytopes whose Coxeter diagram contains a unique dotted edge. We prove that such a polytope in d-dimensional hyperbolic space has at most d+3 facets. In view of results by Kaplinskaja [I.M. Kaplinskaya, Discrete groups generated by reflections in the faces of simplicial prisms in Lobachevskian spaces, Math. Notes 15 (1974) 88-91] and the second author [P. Tumarkin, Compact hyperbolic Coxeter n-polytopes with n+3 facets, Electron. J. Combin. 14 (2007), R69, 36 pp.], this implies that compact hyperbolic Coxeter polytopes with a unique pair of non-intersecting facets are completely classified. They do exist only up to dimension 6 and in dimension 8.  相似文献   

7.
A cubical polytope is a convex polytope of which very facet is a combinatorial cube. We ask for the numbers which occur as vertex numbers ofd-dimensional cubical polytopes, and we show, as a first step, that every cubicald-polytope for evend≥4 has an even number of vertices.  相似文献   

8.
The g-theorem proved by Billera, Lee, and Stanley states that a sequence is the g-vector of a simplicial polytope if and only if it is an M-sequence. For any d-dimensional simplicial polytope the face vector is gMd where Md is a certain matrix whose entries are sums of binomial coefficients. Björner found refined lower and upper bound theorems by showing that the (2×2)-minors of Md are nonnegative. He conjectured that all minors of Md are nonnegative and that is the result of this note.  相似文献   

9.
Acyclic d-polytope is ad-polytope that is combinatorially equivalent to a polytope whose vertices lie on the moment curve {(t, t 2, …,t d):tR}. Every subpolytope of an even-dimensional cyclic polytope is again cyclic. We show that a polytope [or neighborly polytope] withv vertices that is not cyclic has at mostd+1 [respectivelyd]d-dimensional cyclic subpolytopes withv−1 vertices, providedd is even andvd+5.  相似文献   

10.
Necessary conditions on the face numbers of Cohen-Macaulay simplicial complexes admitting a proper action of the cyclic group of a prime order are given. This result is extended further to necessary conditions on the face numbers and the Betti numbers of Buchsbaum simplicial complexes with a proper -action. Adin's upper bounds on the face numbers of Cohen-Macaulay complexes with symmetry are shown to hold for all (d−1)-dimensional Buchsbaum complexes with symmetry on n?3d−2 vertices. A generalization of Kühnel's conjecture on the Euler characteristic of 2k-dimensional manifolds and Sparla's analog of this conjecture for centrally symmetric 2k-manifolds are verified for all 2k-manifolds on n?6k+3 vertices. Connections to the Upper Bound Theorem are discussed and its new version for centrally symmetric manifolds is established.  相似文献   

11.
12.
A vertex is simplicial if the vertices of its neighborhood are pairwise adjacent. It is known that, for every vertex v of a chordal graph, there exists a simplicial vertex among the vertices at maximum distance from v. Here we prove similar properties in other classes of graphs related to that of chordal graphs. Those properties will not be in terms of simplicial vertices, but in terms of other types of vertices that are used to characterize those classes.  相似文献   

13.
The socle of a graded Buchsbaum module is studied and is related to its local cohomology modules. This algebraic result is then applied to face enumeration of Buchsbaum simplicial complexes and posets. In particular, new necessary conditions on face numbers and Betti numbers of such complexes and posets are established. These conditions are used to settle in the affirmative Kühnel's conjecture for the maximum value of the Euler characteristic of a 2k-dimensional simplicial manifold on n vertices as well as Kalai's conjecture providing a lower bound on the number of edges of a simplicial manifold in terms of its dimension, number of vertices, and the first Betti number.  相似文献   

14.
TheMonotone Upper Bound Problem (Klee, 1965) asks if the maximal numberM(d,n) of vertices in a monotone path along edges of ad-dimensional polytope withn facets can be as large as conceivably possible: IsM(d,n)=M ubt (d,n), the maximal number of vertices that ad-polytope withn facets can have according to the Upper Bound Theorem?We show that in dimensiond=4, the answer is “yes”, despite the fact that it is “no” if we restrict ourselves to the dual-to-cyclic polytopes. For eachn≥5, we exhibit a realization of a polar-to-neighborly 4-dimensional polytope withn facets and a Hamilton path through its vertices that is monotone with respect to a linear objective function.This constrasts an earlier result, by which no polar-to-neighborly 6-dimensional polytope with 9 facets admits a monotone Hamilton path.  相似文献   

15.
For a polytope we define the flag polynomial, a polynomial in commuting variables related to the well-known flag vector and describe how to express the flag polynomial of the Minkowski sum of k standard simplices in a direct and canonical way in terms of the k-th master polytope P(k) where ${k \in \mathbb {N}}$ . The flag polynomial facilitates many direct computations. To demonstrate this we provide two examples; we first derive a formula for the f -polynomial and the maximum number of d-dimensional faces of the Minkowski sum of two simplices. We then compute the maximum discrepancy between the number of (0, d)-chains of faces of a Minkowski sum of two simplices and the number of such chains of faces of a simple polytope of the same dimension and on the same number of vertices.  相似文献   

16.
The distance between two vertices of a polytope is the minimum number of edges in a path joining them. The diameter of a polytope is the greatest distance between two vertices of the polytope. We show that if P is a d-dimensional polytope with n facets, then the diameter of P is at most 132d?3(n?d+52).  相似文献   

17.
A polytope in a finite-dimensional normed space is subequilateral if the length in the norm of each of its edges equals its diameter. Subequilateral polytopes occur in the study of two unrelated subjects: surface energy minimizing cones and edge-antipodal polytopes. We show that the number of vertices of a subequilateral polytope in any d-dimensional normed space is bounded above by (d / 2 + 1) d for any d ≥ 2. The same upper bound then follows for the number of vertices of the edge-antipodal polytopes introduced by I. Talata [19]. This is a constructive improvement to the result of A. Pór (to appear) that for each dimension d there exists an upper bound f(d) for the number of vertices of an edge-antipodal d-polytopes. We also show that in d-dimensional Euclidean space the only subequilateral polytopes are equilateral simplices. This material is based upon work supported by the South African National Research Foundation under Grant number 2053752.  相似文献   

18.
For k, d?2, a Bethe tree is a rooted tree with k levels which the root vertex has degree d, the vertices from level 2 to k-1 have degree d+1 and the vertices at the level k are pendent vertices. So et al, using a theorem by Ky Fan have obtained both upper and lower bounds for the Laplacian energy of bipartite graphs. We shall employ the above mentioned theorem to obtain new and improved bounds for the Laplacian energy in the case of Bethe trees.  相似文献   

19.
We study the problem of covering ? d by overlapping translates of a convex polytope, such that almost every point of ? d is covered exactly k times. Such a covering of Euclidean space by a discrete set of translations is called a k-tiling. The investigation of simple tilings by translations (which we call 1-tilings in this context) began with the work of Fedorov [5] and Minkowski [15], and was later extended by Venkov and McMullen to give a complete characterization of all convex objects that 1-tile ? d . By contrast, for k ≥2, the collection of polytopes that k-tile is much wider than the collection of polytopes that 1-tile, and there is currently no known analogous characterization for the polytopes that k-tile. Here we first give the necessary conditions for polytopes P that k-tile, by proving that if P k-tiles ? d by translations, then it is centrally symmetric, and its facets are also centrally symmetric. These are the analogues of Minkowski’s conditions for 1-tiling polytopes, but it turns out that very new methods are necessary for the development of the theory. In the case that P has rational vertices, we also prove that the converse is true; that is, if P is a rational polytope, is centrally symmetric, and has centrally symmetric facets, then P must k-tile ? d for some positive integer k.  相似文献   

20.
We classify terminal simplicial reflexive d-polytopes with 3d − 1 vertices. They turn out to be smooth Fano d-polytopes. When d is even there is one such polytope up to isomorphism, while there are two when d is uneven.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号