首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We show, using semiclassical methods, that as a symmetry is broken, the transition between universality classes for the spectral correlations of quantum chaotic systems is governed by the same parametrization as in the theory of random matrices. The theory is quantitatively verified for the kicked rotor quantum map. We also provide an explicit substantiation of the random matrix hypothesis, namely that in the symmetry-adapted basis the symmetry-violating operator is random.  相似文献   

2.
It is shown that wave functions of quantum systems as ħ → 0 have an extra density near unstable periodic trajectories of the classical problem. The averaged wave function square is represented as the sum over a finite number of periodic trajectories. The contribution of each trajectory is expressed through the elements of the monodromy matrix of the trajectory. The results are compared with the numerical calculations of the wave functions for the stadium billiard.  相似文献   

3.
The energy evolution of a quantum chaotic system under a perturbation that harmonically depends on time is studied in the case of a large perturbation in which the transition rate calculated from the Fermi golden rule exceeds the frequency of the perturbation. It is shown that the energy evolution retains its diffusive character, with a diffusion coefficient that is asymptotically proportional to the magnitude of the perturbation and to the square root of the density of states. The results are supported by numerical calculation. Energy absorption by the system and quantum-classical correlations are discussed. The text was submitted by author in English.  相似文献   

4.
5.
6.
The dynamics of a quantum rotator kicked by a periodic succession of δ-pulses is analysed in the Wigner representation. If the quantum resonance condition does not hold the quasi-energy wave functions are shown not to belong to a certain class of functions of the continuous spectrum. Exact quantum mappings for the rotator model are obtained and the influence of the discreteness of the phase space on the time behavior of the quantum correlation functions is analysed.  相似文献   

7.
8.
We consider energy absorption by driven chaotic systems of the symplectic symmetry class. According to our analytical perturbative calculation, at the initial stage of evolution the energy growth with time can be faster than linear. This appears to be an analog of weak anti-localization in disordered systems with spin-orbit interaction. Our analytical result is also confirmed by numerical calculations for the symplectic quantum kicked rotor.  相似文献   

9.
10.
V B Sheorey  M S Santhanam 《Pramana》1998,50(6):535-545
Computational methods for the calculation of a large number of eigenstates of coupled oscillator system are developed and discussed. These calculations have enabled us to identify and investigate properties of an infinite set of states sharply localized in configuration space in this system. Some of the results and their significance are discussed. Extensions to three-dimensional systems are also briefly considered.  相似文献   

11.
12.
Scrambling in interacting quantum systems out of equilibrium is particularly effective in the chaotic regime. Under time evolution, initially localized information is said to be scrambled as it spreads throughout the entire system. This spreading can be analyzed with the spectral form factor, which is defined in terms of the analytic continuation of the partition function. The latter is equivalent to the survival probability of a thermofield double state under unitary dynamics. Using random matrices from the Gaussian unitary ensemble (GUE) as Hamiltonians for the time evolution, we obtain exact analytical expressions at finite N for the survival probability. Numerical simulations of the survival probability with matrices taken from the Gaussian orthogonal ensemble (GOE) are also provided. The GOE is more suitable for our comparison with numerical results obtained with a disordered spin chain with local interactions. Common features between the random matrix and the realistic disordered model in the chaotic regime are identified. The differences that emerge as the spin model approaches a many-body localized phase are also discussed.  相似文献   

13.
Entanglement evolution is studied in open systems represented by rings of qubits with the Ising interaction and variously oriented external field and with Markov environments. The effect of thermal or dephasing environment is manifested as exponential decrease of the entanglement superposed on its dynamics in the isolated system.  相似文献   

14.
We address the decay in open chaotic quantum systems and calculate semiclassical corrections to the classical exponential decay. We confirm random matrix predictions and, going beyond, calculate Ehrenfest time effects. To support our results we perform extensive numerical simulations. Within our approach we show that certain (previously unnoticed) pairs of interfering, correlated classical trajectories are of vital importance. They also provide the dynamical mechanism for related phenomena such as photoionization and photodissociation, for which we compute cross-section correlations. Moreover, these orbits allow us to establish a semiclassical version of the continuity equation.  相似文献   

15.
16.
We study characteristics of the steady state of a random-matrix model with periodical pumping, where the energy increase saturates by quantum localization. We study the dynamics by making use of the survival probability. We found that Floquet eigenstates are separated into the localized and extended states, and the former governs the dynamics.  相似文献   

17.
We show that for an open quantum system which is classically chaotic (a quartic double well with harmonic driving coupled to a sea of harmonic oscillators) the rate of entropy production has, as a function of time, two relevant regimes: For short times it is proportional to the diffusion coefficient (fixed by the system-environment coupling strength). For longer times (but before equilibration) there is a regime where the entropy production rate is fixed by the Lyapunov exponent. The nature of the transition time between both regimes is investigated.  相似文献   

18.
A recently proposed numerical technique for generation of high-quality unstructured meshes is combined with a finite-element method to solve the Helmholtz equation that describes the quantum mechanics of a particle confined in two-dimensional cavities. Different shapes are treated on equal footing, including Sinai, stadium, annular, threefold symmetric, mushroom, cardioid, triangle, and coupled billiards. The results are shown to be in excellent agreement with available measurements in flat microwave resonator counterparts with nonintegrable geometries.  相似文献   

19.
This paper is devoted to study of the classical-to-quantum crossover of the shot noise in chaotic systems. This crossover is determined by the ratio of the particle dwell time in the system, tau(d), to the characteristic time for diffraction t(E) approximately lambda(-1)|lnh, where lambda is the Lyapunov exponent. The shot noise vanishes when t(E)>tau(d), while it reaches a universal value in the opposite limit. Thus, the Lyapunov exponent of chaotic mesoscopic systems may be found by shot noise measurements.  相似文献   

20.
基于量子粒子群算法的混沌系统参数辨识   总被引:5,自引:0,他引:5       下载免费PDF全文
张宏立  宋莉莉 《物理学报》2013,62(19):190508-190508
针对混沌系统参数辨识问题, 在基本群智能算法粒子群优化算法的基础上, 提出量子粒子群算法, 测试函数证明了算法具有良好的全局优化能力. 进而将其应用于混沌系统参数辨识问题, 将参数辨识问题转化为多维函数空间上的优化问题. 通过对平衡板热对流典型混沌系统Lorenz系统进行研究, 并与基本算法和遗传算法比较. 仿真实验证明, 算法的有效性, 对混沌理论的发展有着非常重要的意义. 关键词: 量子粒子群算法 混沌系统 系统辨识  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号