首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An extremal problem for total domination stable graphs upon edge removal   总被引:1,自引:0,他引:1  
A connected graph is total domination stable upon edge removal, if the removal of an arbitrary edge does not change the total domination number. We determine the minimum number of edges required for a total domination stable graph in terms of its order and total domination number.  相似文献   

2.
张莲珠 《数学进展》2002,31(5):424-426
设G是一个图。G的最小度,连通度,控制数,独立控制数和独立数分别用δ,k,γ,i和α表示,图G是3-γ-临界的,如果γ=3,而且G增加任一条边所得的图的控制数为2.Sumner和Blitch猜想:任意连通的3-γ临界图满足i=3,本文证明了如果G是使α=k 1≤δ的连通3-γ-临界图,那么Sumner-Blitch猜想成立。  相似文献   

3.
Let δ, γ, i and α be respectively the minimum degree, the domination number, the independent domination number and the independence number of a graph G. The graph G is 3-γ-critical if γ = 3 and the addition of any edge decreases γ by 1. It was conjectured that any connected 3-γ-critical graph satisfies i = γ, and is hamiltonian if δ ≥ 2. We show here that every connected 3-γ-critical graph G with γ ≥ 2 satisfies α ≤ δ + 2; if α = δ + 2 then i = γ; while if α ≤ δ + 1 then G is hamiltonian. © 1997 Wiley & Sons, Inc. J Graph Theory 25: 173–184, 1997  相似文献   

4.
Total domination critical and stable graphs upon edge removal   总被引:1,自引:0,他引:1  
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. A graph is total domination edge critical if the removal of any arbitrary edge increases the total domination number. On the other hand, a graph is total domination edge stable if the removal of any arbitrary edge has no effect on the total domination number. In this paper, we characterize total domination edge critical graphs. We also investigate various properties of total domination edge stable graphs.  相似文献   

5.
A graph G is 3‐domination critical if its domination number γ is 3 and the addition of any edge decreases γ by 1. Let G be a 3‐connected 3‐domination critical graph of order n. In this paper, we show that there is a path of length at least n?2 between any two distinct vertices in G and the lower bound is sharp. © 2002 John Wiley & Sons, Inc. J Graph Theory 39: 76–85, 2002  相似文献   

6.
A graph G is dot-critical if contracting any edge decreases the domination number. It is totally dot-critical if identifying any two vertices decreases the domination number. We show that the totally dot-critical graphs essentially include the much-studied domination vertex-critical and edge-critical graphs as special cases. We investigate these properties, and provide a characterization of dot-critical and totally dot-critical graphs with domination number 2. We also consider the question of when a dot-critical graph contains a critical vertex.  相似文献   

7.
A graph G is domination dot-critical, or just dot-critical, if contracting any edge decreases the domination number. It is totally dot-critical if identifying any two vertices decreases the domination number. In this paper, we study an open question concerning of the diameter of a domination dot-critical graph G.  相似文献   

8.
A vertex of a graph is called critical if its deletion decreases the domination number, and an edge is called dot-critical if its contraction decreases the domination number. A graph is said to be dot-critical if all of its edges are dot-critical. In this paper, we show that if G is a connected dot-critical graph with domination number k??? 3 and diameter d and if G has no critical vertices, then d??? 2k?3.  相似文献   

9.
《Quaestiones Mathematicae》2013,36(6):841-848
Abstract

A set S of vertices in a graph G is a connected dominating set of G if S dominates G and the subgraph induced by S is connected. We study the graphs for which adding any edge does not change the connected domination number.  相似文献   

10.
The problem of monitoring an electric power system by placing as few measurement devices in the system as possible is closely related to the well-known domination problem in graphs. In 1998, Haynes et al. considered the graph theoretical representation of this problem as a variation of the domination problem. They defined a set S to be a power dominating set of a graph if every vertex and every edge in the system is monitored by the set S (following a set of rules for power system monitoring). The power domination number γP(G) of a graph G is the minimum cardinality of a power dominating set of G. In this paper, we present upper bounds on the power domination number for a connected graph with at least three vertices and a connected claw-free cubic graph in terms of their order. The extremal graphs attaining the upper bounds are also characterized.  相似文献   

11.
Jia Huang 《Discrete Mathematics》2007,307(15):1881-1897
The bondage number b(G) of a nonempty graph G is the cardinality of a smallest edge set whose removal from G results in a graph with domination number greater than the domination number γ(G) of G. Kang and Yuan proved b(G)?8 for every connected planar graph G. Fischermann, Rautenbach and Volkmann obtained some further results for connected planar graphs. In this paper, we generalize their results to connected graphs with small crossing numbers.  相似文献   

12.
For a graph property P and a graph G, we define the domination subdivision number with respect to the property P to be the minimum number of edges that must be subdivided (where each edge in G can be subdivided at most once) in order to change the domination number with respect to the property P. In this paper we obtain upper bounds in terms of maximum degree and orientable/non-orientable genus for the domination subdivision number with respect to an induced-hereditary property, total domination subdivision number, bondage number with respect to an induced-hereditary property, and Roman bondage number of a graph on topological surfaces.  相似文献   

13.
A graph G is dot-critical if contracting any edge decreases the domination number. It is totally dot-critical if identifying any two vertices decreases the domination number. Burton and Sumner [Discrete Math. 306 (2006) 11-18] posed the problem: Is it true that for k?4, there exists a totally k-dot-critical graph with no critical vertices? In this paper, we show that this problem has a positive answer.  相似文献   

14.
A dominating set of vertices S of a graph G is connected if the subgraph G[S] is connected. Let γc(G) denote the size of any smallest connected dominating set in G. A graph G is k-γ-connected-critical if γc(G)=k, but if any edge is added to G, then γc(G+e)?k-1. This is a variation on the earlier concept of criticality of edge addition with respect to ordinary domination where a graph G was defined to be k-critical if the domination number of G is k, but if any edge is added to G, the domination number falls to k-1.A graph G is factor-critical if G-v has a perfect matching for every vertex vV(G), bicritical if G-u-v has a perfect matching for every pair of distinct vertices u,vV(G) or, more generally, k-factor-critical if, for every set SV(G) with |S|=k, the graph G-S contains a perfect matching. In two previous papers [N. Ananchuen, M.D. Plummer, Matching properties in domination critical graphs, Discrete Math. 277 (2004) 1-13; N. Ananchuen, M.D. Plummer, 3-factor-criticality in domination critical graphs, Discrete Math. 2007, to appear [3].] on ordinary (i.e., not necessarily connected) domination, the first and third authors showed that under certain assumptions regarding connectivity and minimum degree, a critical graph G with (ordinary) domination number 3 will be factor-critical (if |V(G)| is odd), bicritical (if |V(G)| is even) or 3-factor-critical (again if |V(G)| is odd). Analogous theorems for connected domination are presented here. Although domination and connected domination are similar in some ways, we will point out some interesting differences between our new results for the case of connected domination and the results in [N. Ananchuen, M.D. Plummer, Matching properties in domination critical graphs, Discrete Math. 277 (2004) 1-13; N. Ananchuen, M.D. Plummer, 3-factor-criticality in domination critical graphs, Discrete Math. 2007, to appear [3].].  相似文献   

15.
A set S of vertices in a graph G is a total dominating set if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. A graph is total domination edge addition stable if the addition of an arbitrary edge has no effect on the total domination number. In this paper, we characterize total domination edge addition stable graphs. We determine a sharp upper bound on the total domination number of total domination edge addition stable graphs, and we determine which combinations of order and total domination number are attainable. We finish this work with an investigation of claw-free total domination edge addition stable graphs.  相似文献   

16.
图G的符号控制数γs(G)有着许多重要的应用背景,因而确定其精确值有重要意义.Cm表示m个顶点的圈,n-Cm和n·Cm分别表示恰有一条公共边或一个公共顶点的n个Cm的拷贝.给出了n-Cm和n·Cm的符号控制数.  相似文献   

17.
A dominating set for a graph G = (V,E) is a subset of vertices V′ ⊆ V such that for all v E V − V′ there exists some u E V′ for which {v, u} E E. The domination number of G is the size of its smallest dominating set(s). We show that for almost all connected graphs with minimum degree at least 2 and q edges, the domination number is bounded by (q + 1)/3. From this we derive exact lower bounds for the number of edges of a connected graph with minimum degree at least 2 and a given domination number. We also generalize the bound to k-restricted domination numbers; these measure how many vertices are necessary to dominate a graph if an arbitrary set of k vertices must be incluced in the dominating set. © 1997 John Wiley & Sons, Inc. J Graph Theory 25: 139–152, 1997  相似文献   

18.
A graph G is dot-critical if contracting any edge decreases the domination number. Nader Jafari Rad (2009) [3] posed the problem: Is it true that a connected k-dot-critical graph G with G=0? is 2-connected? In this note, we give a family of 1-connected 2k-dot-critical graph with G=0? and show that this problem has a negative answer.  相似文献   

19.
A total dominating set in a graph G is a subset X of V (G) such that each vertex of V (G) is adjacent to at least one vertex of X. The total domination number of G is the minimum cardinality of a total dominating set. A function f: V (G) → {−1, 1} is a signed dominating function (SDF) if the sum of its function values over any closed neighborhood is at least one. The weight of an SDF is the sum of its function values over all vertices. The signed domination number of G is the minimum weight of an SDF on G. In this paper we present several upper bounds on the algebraic connectivity of a connected graph in terms of the total domination and signed domination numbers of the graph. Also, we give lower bounds on the Laplacian spectral radius of a connected graph in terms of the signed domination number of the graph.  相似文献   

20.
图的符号边控制数有着许多重要的应用背景.已知它的计算是NP-完全问题,因而确定其精确值有重要意义.本文确定了图F*n+1、H n和P*n的符号边控制数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号