首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 936 毫秒
1.
The Cu+ ion solid electrolyte 47Cu Br·3(CH3)2 C6H12N2Br2 was prepared by hot-pressing and characterised by X-ray analysis and electrical measurements. Novel cell arrangements were used to study the electrochemical behaviour of interfaces between this electrolyte and copper metal and also between this electrolyte and two well known solid solution electrodes (SSEs) for copper, Cu2Mo6S7.59 and Cu1.8S. The behaviour of the electrolyte/copper interface was correlated with scanning electron microscope (SEM) examinations showing the growth of copper dendrites at the interface. Results from the electrolyte/SSE interfaces showed that there is no interfacial polarisation and that the electrode polarisation is controlled solely by the diffusion of Cu+ ions in the SSE. These experiments allowed estimates of the chemical diffusion coefficient for Cu+ ions in each material to be made.  相似文献   

2.
The use of point electrodes for measuring chemical diffusion coefficients of mixed conducting solids with prevailing electronic conductivity is described and applied to low temperature Cu2S. The electrochemical cell consist of the sequence of phases Pt/mixed conductor/Pt-point electrode. Applying small dc voltages to the cell leads to a steady state composition gradient within characteristic times that depend on the radius of the point electrode and on the chemical diffusion coefficient. The composition change after changing electrical voltage or current is followed by measuring the ohmic resistance change as a function of time, using ac nethods in the case of switching off. The method requires that the electronic conductivity depends on the usually small, but variable deviations of the composition of the solids from a definite stoichiometric composition. The measurements on the low temperature phase of Cu2S give chemical diffusion coefficients ranging between 6.10-6 cm2/s and 1.10-7 cm2/s at 60°C.  相似文献   

3.
The chemical diffusion coefficient of Cu2O has been obtained for an oxygen partial pressure near 5 10?4 atm as a function of the temperature in the range 700–900°C D? = 1 62 10?4 exp(?5140 ± 600 cal mol ?1)/RT cm2s?1 This was easily achieved according to the electrochemical method used for the preparation of gaseous mixtures whose Po2; is lower than 10?5 atm The slight difference observed with the previously published results by Maluenda, and obtained for Po2 values which increase with T between 10?4 and 0.21 atm, may be due to an oxygen partial pressure effect already observed in the case of CoO. An ambipolar treatment of the chemical diffusion, in the case of p-type semiconductor MaOb, oxides, has allowed us to express the chemical diffusion coefficient as a function of the concentration of the prevailing defects and of their diffusion coefficient In the case where the prevailing defects are cationic vacancies α times ionized we have shown that the expression D? = (1 + α)Dvα can be generalized to the A2O compounds This set of results has allowed us, according to the copper self diffusion data obtained recently by Peterson etal, to estimate the apparent enthalpy of formation of the catiomc vacancies ΔHf 23 ± 0 8 kcal mol?1.  相似文献   

4.
Results are presented for nmr investigations into the diffusion of Cu+ in NaI. The nmr results show that a considerable amount of the copper(I) ions is incorporated interstitially and that the mean jump frequency νCu of the Cu+ ions is much higher than that of the host cations: νCuNa ≈ 820 at 320 °C. Two values for the temperature dependence of νCu are found: E1 = 1.63 eV (T < 300 °C) and E2 = 0.61 eV (T > 300 °C). The nature of the mechanism of the Cu+-migration in NaI is discussed and a model proposed. The interstitial incorporation and fast diffusion of the Cu+ ions is confirmed by a comparison with the results for CdI2 doped NaI. CdI2 is incorporated substitutionally and the mean jump frequency νCd is lower than that of the host ions: νCd < 108 s-1 at 650 °C.For the pure substance conductivity measurements were performed too, for vomparison. The agreement of nmr and conductivity data is good. From both δHm = 0.59 eV and δHs = 2.08 eV were calculated in excellent agreement with recently reported data. It is shown that the presence of oxygen in the samples leads to wrong data. A method for removing this impurity is described.  相似文献   

5.
Samples with the chemical formula Cu1−xZnxFe2O4 (x=0.2, 0.4, 0.6, 0.8 and 1) were prepared by the standard ceramic method. The dielectric constant and dielectric loss tangent were studied as a function of vacancy jump rate. The results show that the dielectric constant and dielectric loss tangent decrease with increasing vacancy jump rate. In addition, the electron jump length in the octahedral sites was studied as a function of zinc concentration. The increase in jump length with Zn concentration has been attributed to the substitution of Fe+3 for Zn2+ at the A-sites, which increases the B-B interaction. The increase of diffusion coefficient with increasing Zn concentration was reinforced by the increase of jump rate.  相似文献   

6.
The diffusion of110Ag in Cu2O has been measured by a serial-sectioning technique as a function of temperature (700–1132°C) and oxygen partial pressure (6 × 10?6 ?8 × 10?2 atm). The data are fit to the defect model for Cu2O developed by the authors in the preceding paper. Silver ions have a larger impurity-vacancy binding free energy and/or a larger jump frequency for the singly charged cation vacancies relative to that for the neutral cation vacancies. The activation enthalpies for the diffusion of copper and silver ions in Cu2O are nearly equal, but the absolute value of D1Ag is about three times larger than D1Cu even though the silver ion is 31% larger than the copper ion.  相似文献   

7.
The processes of electrochemical decomposition of the solid electrolyte RbCu4Cl3I2 at the vitreous carbon electrode and chemical decomposition of RbCu4Cl3I2 by iodine has been investigated. The anodic decomposition of the electrolyte occurs in two steps. At first, the oxidizing electrode reaction of Cu+ ions up to Cu2+ ions takes place at potentials higher than 0.57 V and onto the electrode surface the layer of decomposition products is formed, including the compound of divalent copper RbCuCl3. Then the oxidizing reaction of I ions occurs at potentials higher than approximately 0.67 V with deposition of the iodine layer onto the electrode surface. The deposition rate of the layers of decomposition products is controlled by instantaneous nucleation and two-dimensional growth of the deposit. It was shown that slow diffusion of the iodine in the reaction product layer is a limiting step in the chemical interaction of iodine with RbCu4Cl3I2. For the compressed RbCu4Cl3I2 sample investigated, iodine diffusion coefficient was calculated to be 6.2×10−7 cm2 s−1. Iodine loss from the glassy carbon surface is about 1.1×10−4 g cm−2 s−1 at the thickness of the RbCu4Cl3I2 sample is equal to 2 mm.  相似文献   

8.
The low‐temperature oxidation of ≈10 nm diameter copper nanocrystals is characterized using in situ UV–vis absorbance spectroscopy and observed to lead to hollow copper oxide shells. The kinetics of the oxidation of solid Cu nanocrystals to hollow Cu2O nanoparticles is monitored in real‐time via the localized surface plasmon resonance response of the copper. A reaction‐diffusion model for the formation of hollow nanoparticles is fit to the measured time for complete Cu nanocrystal oxidation, and is used to quantify the diffusion coefficient of Cu in Cu2O and the activation energy of the oxidation process. The diffusivity measured here in single‐crystalline nanoscale systems is 1–5 orders of magnitude greater than in comparable systems in the bulk, and have an Arrhenius dependence on temperature with an activation energy for diffusion of 37.5 kJ mol?1 for 85 °C ≤ T ≤ 205 °C. These diffusion parameters are measured in some of the smallest metal systems and at the lowest oxidation temperatures yet reported, and are enabled by the unique nanoscale single‐crystalline material and the in situ characterization technique.  相似文献   

9.
Ionic conductivity and chemical diffusion coefficient have been studied for superionic polycrystalline Cu1.75Se copper selenide within the temperature interval 300–500 K. An increase in ionic conductivity with an grain size increase is observed. In our opinion, this fact is caused by lower activation energy for the bulk diffusion than that for the grain boundary diffusion.  相似文献   

10.
Cd1-xZnxTe晶体的In气氛扩散热处理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
李万万  孙康 《物理学报》2006,55(4):1921-1929
为了满足辐射探测器件的需要,将生长得到的Cd1-xZnxTe晶体在In 气氛下进行退火处理能有效提高晶体的电阻率等性能. 退火处理过程的实质是一个扩散过程 ,因此研究扩散系数与Cd1-xZnxTe晶体的性能特别是电阻率变化之 间的关系具有重要的意义. 建立了退火处理过程中Cd1-xZnxTe晶体 材料电阻率及导电类型变化与杂质的扩散系数之间关系的模型.结合实验数据,获得了10 关键词: CdZnTe 热处理 In气氛 扩散系数  相似文献   

11.
刘丽丽  蒋成保 《中国物理 B》2011,20(12):127502-127502
The oxidation microstructure and maximum energy product (BH)max loss of a Sm(Co0.76, Fe0.1, Cu0.1, Zr0.04)7 magnet oxidized at 500 ℃ were systematically investigated. Three different oxidation regions were formed in the oxidized magnet: a continuous external oxide scale, an internal reaction layer, and a diffusion zone. Both room-temperature and high-temperature (BH)max losses exhibited the same parabolic increase with oxidation time. An oxygen diffusion model was proposed to simulate the dependence of (BH)max loss on oxidation time. It is found that the external oxide scale has little effect on the (BH)max loss, and both the internal reaction layer and diffusion zone result in the (BH)max loss. Moreover, the diffusion zone leads to more (BH)max loss than the internal reaction layer. The values of the oxidation rate constant k for internal reaction layer and oxygen diffusion coefficient D for diffusion zone were obtained, which are about 1.91 × 10-10 cm2/s and 6.54 × 10-11 cm2/s, respectively.  相似文献   

12.
In recent times, copper sulphide (Cu2S) diffusion in the transformer insulation is a major problem reducing the life of transformers. It is therefore essential to identify a simple methodology to understand the diffusion of Cu2S into the solid insulation [oil impregnated pressboard (OIP)]. In the present work, laser-induced breakdown spectroscopy (LIBS) was adopted to study the diffusion of Cu2S into the pressboard insulation and to determine the depth of diffusion. The diffusion of Cu2S in pressboard was confirmed by electrical discharge studies. In general, flashover voltage and increase in ageing duration of pressboard insulation/Cu concentration had inverse relationship. The characteristic emission lines were also studied through optical emission spectroscopy. Based on LIBS studies with Cu powder dispersed pressboard samples, Cu I emission lines were found to be resolvable up to a lowest concentration of 5 μg/cm2. The LIBS intensity ratio of Cu I–Ca II emission lines were found to increase with increase in the ageing duration of the OIP sample. LIBS studies with OIP samples showed an increase in the optical emission lifetime. LIBS results were in agreement with the electrical discharge studies.  相似文献   

13.
Solid 63Cu NMR and Molecular Dynamics (MD) methods have been used to investigate the dynamical structure of Ag0.99Cu0.01I crystal, through the viewpoint of the chemical shift and the spin-lattice relaxation. In the superionic phase (α-phase), we obtained the temperature variation of the chemical shift as −0.2 ppm/K, and the activation energy of the Cu+ ion diffusion as 11 kJ/mol. The temperature dependence of the chemical shift was explained by the calculated chemical shielding surface based on ab initio MO calculation, and by the probability density of Cu+ ion estimated by MD simulation. The spin-lattice relaxation was also analyzed by using the MD method in which we assumed two jumping models as the diffusion process of the mobile cations. It is concluded that the temperature dependence of the chemical shift is dominated by the shielding in the vicinity of the 24(h) site, and the observed activation energy is due to the diffusion process of the mobile cations jumping from the 6(b) intrasub-lattice to the nearest-neighbor 6(b) sub-lattice.  相似文献   

14.
用密度泛函B3LYP /LANL2DZ方法对Cu2(n=0,1,2)分子离子进行理论研究.结果表明:Cu2,Cu+2,Cu-2,Cu22-能稳定存在,基电子状态分别是:1Σg(Cu2),2Σg(Cu2关键词: 分子离子 密度泛函 势能函数 能级  相似文献   

15.
The diffusion coefficient of nickel in cold-worked carbon steel was determined with the diffusion couple method in the temperature range between 320 and 450 °C. Diffusion couple was prepared by electro-less nickel plating on the surface of a 20% cold-worked carbon steel. The growth in width of the interdiffusion zone was proportional to the square root of diffusion time to 12,000 h. The diffusion coefficient (DNi) of nickel in cold-worked carbon steel was determined by extrapolating the concentration-dependent interdiffusion coefficient to 0% of nickel. The temperature dependence of DNi is expressed by DNi = (4.5 + 5.7/?2.5) × 10?11 exp (?146 ± 4 kJ mol?1/RT) m2s?1. The value of DNi at 320 °C is four orders of magnitude higher than the lattice diffusion coefficient of nickel in iron. The activation energy 146 kJ mol?1 is 54% of the activation energy 270.4 kJ mol?1 for lattice diffusion of nickel in the ferromagnetic state iron.  相似文献   

16.
The chemical diffusion coefficient of lithium in oxidized potassium hexatungstate and reduced hexagonal potassium tungsten bronze films was measured by the galvanostatic transient method. Two-dimensional anisotropic diffusion was found in the hexagonal hexatungstates, while no appreciable anisotropy was observed in samples with the potassium hexagonal tungsten bronze structure. The chemical diffusion coefficients along the c-axis in thin films of the tungstates K0.33WO3.165 and K0.3WO3.15 (about 6000 Å thick) are about 10?10 cm2/s, while those along the a-axis are about 10?7 cm2/s. This latter value is about the same to those measured in a potassium hexagonal tungsten bronze single crystal of composition K0.28WO3 which was grown electrochemically. It is most likely that the presence of the additional oxygen atoms in the tunnels within the hexatungstate structure is responsible for the large decrease in the rate of motion of lithium along the c-axis that leads to the anisotropy in the macroscopic diffusion coefficient in this crystal structure.  相似文献   

17.
Mutual mass diffusion and thermal diffusion has been investigated in poly(dimethylsiloxane)/ poly(ethylmethylsiloxane) (PDMS/PEMS) polymer blends of equal weight fractions. Molar masses ranged from below 1 to over 20 kg/mol. Both the mutual mass (D) and the thermal diffusion (DT) coefficient contain a thermally activated factor with an activation temperature of 1415 K. The molar mass dependence of DT is due to an end-group effect of the local friction coefficient. The thermal diffusion coefficient in the limit of long chains and infinite temperature is DT0, = - 1.69×10-7cm2(sK)-1. The Soret coefficient ST of blends far enough away from a critical point is proportional to the static structure factor S(q = 0).  相似文献   

18.
Some aspects of the spinodal method of deducing diffusion coefficients are considered. The decomposition kinetics yield the interdiffusion coefficient which is, however, not an intrinsic property of ionic crystals at low temperatures since it depends on the nonequilibrium vacancy concentration. Comparing, though, the spinodal kinetics in crystals doped with aliovalent impurity and undoped crystals enables one to obtain the vacancy diffusion coefficient which is an intrinsic property. The spinodal decomposition has been studied in nominally pure and Ca2+-doped mixed crystals of NaCl-KCl by the thermal gradient method and the cation vacancy diffusion coefficient Dv = 2 × 10−12cm2s−1 at room temperature.  相似文献   

19.
G. I. Ostapenko 《Ionics》1999,5(3-4):316-320
The electrochemical processes occurring at vitreous carbon electrodes in contact with the solid electrolyte RbCu4Cl3I2 has been investigated. The reaction $$Cu^ + - e \leftrightarrow Cu^{2 + } $$ in the range of potentials ?0.05...+ 0.57 V on the electrode takes place. The exchange current density of this reaction is about 25·10?2 A·m?2. The rate of the electrode processes is controlled by the slown diffusion of Cu2+ ions near the electrode. The diffusion coefficient of Cu2+ ions in the electrolyte is about 1.5·10?12 m2·s?1. At potentials higher than 0.57 V on the electrode surface, a divalent copper phase is deposited. The rate of this process is controlled by the instantaneous nucleation and the two-dimensional growth of the phase. At potentials lower than ?0.05 V, the reaction $$Cu^ + - e \to Cu^0 $$ begins at the electrode and metallic copper is deposited. The rate of this reaction is controlled by the instantaneous nucleation and the three-dimensional growth of the deposit. Perpendicular to the electrode surfaces, the growth rate of the deposition has the order of magnitude of 10?9 m·s?1 and the quantity of nuclei is not less than 1012 m?2.  相似文献   

20.
Gold (Au) diffusion in superconducting Bi1.8Pb0.35Sr1.9Ca2.1Cu3Oy was investigated over the temperature range 500-800 °C by the energy dispersive X-ray fluorescence (EDXRF) technique. It is found that the Au diffusion coefficient decreases as the diffusion-annealing temperature decreases. The temperature dependences of Au diffusion coefficient in grains and over grain boundaries are described by the relations D1=6.7×10−5exp(−1.19 eV/kBT) and D2=9.7×10−4exp(−1.09 eV/kBT), respectively. The diffusion doping of Bi-2223 by Au causes a significant increase of the lattice parameter c by about 0.19%. For the Au-diffused samples, dc electrical resistivity and transport critical current density measurements indicated the critical transition temperature increased from 100 to 104 K and the critical current density increased from 40 to 125 A cm−2, in comparison with those of undoped samples. From scanning electron microscope (SEM) and X-ray diffraction (XRD) measurements it is observed that Au doping of the sample also improved the surface morphology and increased the ratio of the high-Tc phase to the low-Tc phase. The possible reasons for the observed improvement in microstructure and superconducting properties of the samples due to Au diffusion are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号