首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactions of dioxoruthenium(VI) porphyrins, [Ru(VI)O2(Por)], with p-chloroaniline, trimethylamine, tert-butylamine, p-nitroaniline, and diphenylamine afforded bis(amine)ruthenium(II) porphyrins, [Ru(II)(Por)(L)2] (L-p-ClC6H4NH2, Me3N, Por=TTP, 4-Cl-TPP; L=tBuNH2, Por = TPP, 3,4,5-MeO-TPP, TTP, 4-Cl-TPP, 3,5-Cl-TPP) and bis(amido)ruthenium(IV) porphyrins, [Ru(IV)(Por)(X)2] (X=p-NO2C6H4NH, Por=TTP, 4-Cl-TPP; X = Ph2N, Por = 3,4,5-MeO-TPP, 3,5-Cl-TPP), respectively. Oxidative deprotonation of [Ru(II)(Por)(NH2-p-C6H4Cl)2] in chloroform by air generated bis(arylamido)ruthenium(IV) porphyrins, [RuIV(Por)(NH-p-C6H4Cl)2] (Por=TTP. 4-Cl-TPP). Oxidation of [RuII(Por)-(NH2tBu)2] by bromine in dichloromethane in the presence of tert-butylamine and traces of water produced oxo(imido)ruthenium(VI) porphyrins, [RuVI-O(Por)(NtBu)] (Por=TPP, 3,4,5-MeO-TPP, TTP, 4-Cl-TPP, 3,5-Cl-TPP). These new classes of ruthenium complexes were characterized by 1H NMR, IR, and UV/visible spectroscopy, mass spectrometry, and elemental analysis. The structure of [Ru(IV)(TTP)(NH-p-C6H4Cl)2 . CH2Cl2 was determined by X-ray crystallography. The Ru-N bond length and the Ru-N-C angle of the Ru-NHAr moiety are 1.956(7) A and 135.8(6) degrees, respectively.  相似文献   

2.
Bis(N-ethylideneethanamine)ruthenium(ii) porphyrins, [Ru11(Por)(N(Et)=CHMe)2] (Por=TTP, 4-Cl-TPP), were prepared by the reaction of dioxoruthenium(VI) porphyrins with triethylamine in approximately 85% yields. The reaction between dioxoruthenium(VI) porphyrins and benzophenone imine afforded bis(diphenylmethyleneamido)ruthenium(IV) porphyrins, [Ru(IV)(Por)(N=CPh2)2] (Por=TTP, 3,4,5-MeO-TPP), in approximately 65% yields. These new classes of metalloporphyrins were characterized by 1H NMR, UV/Vis, and IR spectroscopy as well as by mass spectrometry and elemental analysis. The X-ray crystallographic structures of [Ru(II)(TTP)(N(Et)=CHMe)2] and [Ru(IV)(3,4,5-MeO-TPP)(N=CPh2)2] revealed an axial Ru-N bond length of 2.115(6) A for the imine complex and 1.896(8) A for the methyleneamido complex. Each of the N=CPh2 axial groups in [Ru(IV)(3,4,5-MeO-TPP)(N=CPh2)2] adopts a linear coordination mode with a corresponding Ru-N-C angle of 175.9(9)degrees. Spectral and structural studies revealed essentially single bonding character for the bis(imine) complexes but a multiple bonding character for the bis(methyleneamido) complexes with respect to their axial Ru-N bonds.  相似文献   

3.
Oxo(tert-butylimido) or bis(tert-butylimido)osmium(VI) porphyrins Os(Por)(O)(NBut) and Os(Por)(NBut)2, [Por=meso-tetrakis(p-tolyl)porphyrinato (TTP) and meso-tetrakis(4-chlorophe-nyl)porphyrinato (4-Cl-TPP)] were synthesized by air oxidation of bis(tert-butylamme)osmium(II) porphyrins [Os(Por)(H2NBut)2 (Por=TPP, 4-Cl-TPP], depending on whether tert-butylamine is present. The bis(tert-butylamine)ruthenium(II) porphyrins [Ru(Por)(H2NBut)2, Por=TTP, 4-Cl-TPP] can undergo bromine oxidation to give oxo(tert-butylimido)ruthenium(VI) complexes in quantitative yields. All these new complexes were characterized by 1H NMR, UV-Visible and IR spectroscopy. The X-ray crystal structures of Os(TTP)(O)(NBut).EtOH and Os(4-Cl-TPP)(NBut)2 have been determined. Crystal data: for Os(TTP)(O)(NBut).EtOH: monoclinic, space group P21/c, a=1.3546(6) nm, b=2.3180(3) nm, c=1.6817(3) nm, B=90.84(2), V=527.97(1) nm3, Z=4. The Os=O and Os=NBut distances in Os(TTP)(O)(NBut).EtOH are 0.1772(7) nm and 0.1759(9) nm, respectively. The av  相似文献   

4.
Bis(1,1-diphenylhydrazido(1-))ruthenium(IV) porphyrins, [Ru(IV)(Por)(NHNPh2)2] (Por = TPP, TTP, 4-Cl-TPP, 4-MeO-TPP), were prepared in approximately 60% yields through the reaction of dioxoruthenium(VI) porphyrins, [Ru(VI)(Por)O2], with 1,1-diphenylhydrazine in ethanol. This new type of ruthenium complex has been characterized by 1H NMR, IR, UV-vis, and FABMS with elemental analysis. The crystal structure of [Ru(IV)(TTP)(NHNPh2)2], which reveals an eta1-coordination mode for both hydrazido axial ligands, has been determined. The average Ru-NHNPh2 distance and Ru-N-N angle were found to be 1.911(3) A and 141.1(3) degrees, respectively. The porphyrin ring exhibits a ruffling distortion that is unprecedentedly large for ruthenium complexes with simple porphyrinato ligands (such as TTP). This is probably due to the steric effect of the axial hydrazido(1-) ligands.  相似文献   

5.
Leung SK  Huang JS  Zhu N  Che CM 《Inorganic chemistry》2003,42(22):7266-7272
Reactions of dioxoosmium(VI) porphyrins [Os(VI)(Por)O(2)] with excess 1,1-diphenylhydrazine in tetrahydrofuran at ca. 55 degrees C for 15 min afforded bis(hydrazido(1-))osmium(IV) porphyrins [Os(IV)(Por)(NHNPh(2))(2)] (1a, Por = TPP (meso-tetraphenylporphyrinato dianion); 1b, Por = TTP (meso-tetrakis(p-tolyl)porphyrinato dianion)), hydroxo(amido)osmium(IV) porphyrins [Os(IV)(Por)(NPh(2))(OH)] (2a, Por = TPP; 2b, Por = TTP), and bis(hydrazido(2-))osmium(VI) porphyrin [Os(VI)(Por)(NNPh(2))(2)] (3c, Por = TMP (meso-tetramesitylporphyrinato dianion)). The same reaction under harsher conditions (in refluxing tetrahydrofuran for ca. 1 h) gave a nitridoosmium(VI) porphyrin, [Os(VI)(Por)(N)(OH)] (4b, Por = TTP). Oxidation of 1a,b with bromine in dichloromethane afforded bis(hydrazido(2-)) complexes [Os(VI)(TPP)(NNPh(2))(2)] (3a) and [Os(VI)(TTP)(NNPh(2))(2)] (3b), respectively. All the new osmium porphyrins were identified by (1)H NMR, IR, and UV-vis spectroscopy and mass spectrometry; the structure of 2b was determined by X-ray crystallography (Os-NPh(2) = 1.944(6) A, Os-OH = 1.952(5) A).  相似文献   

6.
[Ru(VI)(TMP)(NSO2R)2] (SO2R = Ms, Ts, Bs, Cs, Ns; R = p-C6H4OMe, p-C6H4Me, C6H5, p-C6H4Cl, p-C6H4NO2, respectively) and [Ru(VI)(Por)(NTs)2] (Por = 2,6-Cl2TPP, F20-TPP) were prepared by the reactions of [Ru(II)(Por)(CO)] with PhI=NSO2R in CH2Cl2. These complexes exhibit reversible Ru(VI/V) couple with E(1/2) = -0.41 to -0.12 V vs Cp2Fe(+/0) and undergo imido transfer reactions with styrenes, norbornene, cis-cyclooctene, indene, ethylbenzenes, cumene, 9,10-dihydroanthracene, xanthene, cyclohexene, toluene, and tetrahydrofuran to afford aziridines or amides in up to 85% yields. The second-order rate constants (k2) of the aziridination/amidation reactions at 298 K were determined to be (2.6 +/- 0.1) x 10(-5) to 14.4 +/- 0.6 dm3 mol(-1) s(-1), which generally increase with increasing Ru(VI/V) reduction potential of the imido complexes and decreasing C-H bond dissociation energy (BDE) of the hydrocarbons. A linear correlation was observed between log k' (k' is the k2 value divided by the number of reactive hydrogens) and BDE and between log k2 and E(1/2)(Ru(VI/V)); the linearity in the former case supports a H-atom abstraction mechanism. The amidation by [Ru(VI)(TMP)(NNs)2] reverses the thermodynamic reactivity order cumene > ethylbenzene/toluene, with k'(tertiary C-H)/k'(secondary C-H) = 0.2 and k'(tertiary C-H)/k'(primary C-H) = 0.8.  相似文献   

7.
Chen WZ  Ren T 《Inorganic chemistry》2006,45(20):8156-8164
A high-yield synthesis of mixed-bridging-ligand Ru2 compounds, Ru2(D(3,5-Cl2Ph)F)(4-n)(OAc)nCl [n = 1 (1) and 2 (2)] was developed, where D(3,5-Cl2Ph)F is bis(3,5-dichlorophenyl)formamidinate. The acetate ligands in 1 and 2 can be quantitatively displaced with DMBA-I to yield Ru2(D(3,5-Cl2Ph)F)3(DMBA-I)Cl (3) and Ru2(D(3,5-Cl2Ph)F)2(DMBA-I)2Cl (4), respectively, where DMBA-I is N,N'-dimethyl-4-iodobenzamidinate. When compound 2 was treated with 1 equiv of HDMBA-I, a unique Ru2 compound containing three different types of bidentate bridging ligands, cis-Ru2(D(3,5-Cl2Ph)F)2(DMBA-I)(OAc)Cl (5), was obtained. Subsequent reactions between 3/4 and (trimethylsilyl)acetylene under Sonogashira coupling conditions resulted in Ru2(D(3,5-Cl2Ph)F)(4-n)(DMBA-C[triple bond]CSiMe3)nCl [n = 1 (6) and 2 (8)] in excellent yields, which were converted to the corresponding bis(phenylacetylide) compounds Ru2(D(3,5-Cl2Ph)F)(4-n)(DMBA-C[triple bond]CSiMe3)n(C[triple bond]CPh)2 [n = 1 (7) and 2 (9)]. Structural studies of several compounds provided insights about the change in Ru2 coordination geometry upon the displacement of bridging and axial ligands. Voltammetric studies of these compounds revealed rich redox characteristics in all Ru2 compounds reported and a minimal electronic perturbation upon the peripheral Sonogashira modification.  相似文献   

8.
Oxo(tert-butylimido) or bis(tert-butylimido)osmium(VI) porphyrins Os(Por)(O)( NBut) and Os(Por)(NBut)2, [Por=meso-tetrakis(p-tolyl)porphyrinato (TTP) and meso-tetrakis(4-chlorophenyl)porphyrinato (4-CI-TPP)] were synthesized by air oxidation of bis(tert-butylamine)osmium(II) porphyrins [Os(Por)(H2NBut)n (Por=TPP, 4-C1-TPP], depending on whether text-butylamine is present. The bis(tert-butylamine)ruthenium(II) porphyrins [Ru(Por)(H2NBut)z, Por=TTP, 4-CI-TPP] can undergo bromine oxidation to give oxo(tert-butylimido)ruthenium(VI) complexes in quantitative yields. All these nem complexes were characterized by 1H NMR, UV-Visible and IR spectroscopy. The X-ray crystal structures of Os(TTP)(O)(NBut).EtOH and Os(4-Cl-TPP)(NBut)2 have been determined. Crystal data: for Os(TTP)(O)(NBu').EtOH: monoclinic, space group P21/c, a=1.3546(6) nm, b=2.3180(3) am, c=1.6817(3) nm, β=90.84(2)°, V=527.97(1) nm3, Z=4. The Os=O and Os=NBut distances in Os(TTP)(O)(NBut).EtOH are 0.1772(7) nm and 0.1759(9) nm, respectively. The average Os=NBut distance of Os(4-C1-TPP)(NBut)2 is 0.1775 nm.  相似文献   

9.
[Ru(IV)(2,6-Cl2tpp)Cl2], prepared in 90 % yield from the reaction of [Ru(VI)(2,6-Cl2tpp)O2] with Me3SiCl and structurally characterized by X-ray crystallography, is markedly superior to [Ru(IV)(tmp)Cl2], [Ru(IV)(ttp)Cl2], and [Ru(II)(por)(CO)] (por=2,6-Cl2tpp, F20-tpp, F28-tpp) as a catalyst for alkene epoxidation with 2,6-Cl2pyNO (2,6-Cl2tpp=meso-tetrakis(2,6-dichlorophenyl)porphyrinato dianion; tmp=meso-tetramesitylporphyrinato dianion; ttp=meso-tetrakis(p-tolyl)porphyrinato dianion; F20-tpp=meso-tetrakis(pentafluorophenyl)porphyrinato dianion; F28-tpp=2,3,7,8,12,13,17,18-octafluoro-5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato dianion). The "[Ru(IV)(2,6-Cl2tpp)Cl2]+2,6-Cl2pyNO" protocol oxidized, under acid-free conditions, a wide variety of hydrocarbons including 1) cycloalkenes, conjugated enynes, electron-deficient alkenes (to afford epoxides), 2) arenes (to afford quinones), and 3) Delta5-unsaturated steroids, Delta4-3-ketosteroids, and estratetraene derivatives (to afford epoxide/ketone derivatives of steroids) in up to 99 % product yield within several hours with up to 100 % substrate conversion and excellent regio- or diastereoselectivity. Catalyst [Ru(IV)(2,6-Cl2tpp)Cl2] is remarkably active and robust toward the above oxidation reactions, and turnover numbers of up to 6.4x10(3), 2.0x10(4), and 1.6x10(4) were obtained for the oxidation of alpha,beta-unsaturated ketones, arenes, and Delta5-unsaturated steroids, respectively.  相似文献   

10.
A reproducible synthesis of a competent epoxidation catalyst, [Ru(VI)(TPP)(O)2)] (TPP = tetraphenylporphyrin dianion), starting from [Ru(II)(TPP)(CO)L] (L = none or CH3OH), is described. The molecular structure of the complex was determined by using ab initio X-ray powder diffraction (XRPD) methods, and its solution behavior was in detail investigated by NMR techniques such as PGSE (pulsed field gradient spin-echo) measurements. [Ru(IV)(TPP)(OH)]2O, a reported byproduct in the synthesis of [Ru(VI)(TPP)(O)2], was synthesized in a pure form by oxidation of [Ru(II)(TPP)(CO)L] or by a coproportionation reaction of [Ru(VI)(TPP)(O)2] and [Ru(II)(TPP)(CO)L], and its molecular structure was then determined by XRPD analysis. [Ru(VI)(TPP)(O)2] can be reduced by dimethyl sulfoxide or by carbon monoxide to yield [Ru(II)(TPP)(S-DMSO)2] or [Ru(II)(TPP)(CO)(H2O)], respectively. These two species were characterized by conventional single-crystal X-ray diffraction analysis.  相似文献   

11.
A series of ruthenium(II) acetonitrile, pyridine (py), carbonyl, SO2, and nitrosyl complexes [Ru(bdmpza)(O2CR)(L)(PPh3)] (L = NCMe, py, CO, SO2) and [Ru(bdmpza)(O2CR)(L)(PPh3)]BF4 (L = NO) containing the bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza) ligand, a N,N,O heteroscorpionate ligand, have been prepared. Starting from ruthenium chlorido, carboxylato, or 2-oxocarboxylato complexes, a variety of acetonitrile complexes [Ru(bdmpza)Cl(NCMe)(PPh3)] (4) and [Ru(bdmpza)(O2CR)(NCMe)(PPh3)] (R = Me (5a), R = Ph (5b)), as well as the pyridine complexes [Ru(bdmpza)Cl(PPh3)(py)] (6) and [Ru(bdmpza)(O2CR)(PPh3)(py)] (R = Me (7a), R = Ph (7b), R = (CO)Me (8a), R = (CO)Et (8b), R = (CO)Ph) (8c)), have been synthesized. Treatment of various carboxylato complexes [Ru(bdmpza)(O2CR)(PPh3)2] (R = Me (2a), Ph (2b)) with CO afforded carbonyl complexes [Ru(bdmpza)(O2CR)(CO)(PPh3)] (9a, 9b). In the same way, the corresponding sulfur dioxide complexes [Ru(bdmpza)(O2CMe)(PPh3)(SO2)] (10a) and [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) were formed in a reaction of the carboxylato complexes with gaseous SO2. None of the 2-oxocarboxylato complexes [Ru(bdmpza)(O2C(CO)R)(PPh3)2] (R = Me (3a), Et (3b), Ph (3c)) showed any reactivity toward CO or SO2, whereas the nitrosyl complex cations [Ru(bdmpza)(O2CMe)(NO)(PPh3)](+) (11) and [Ru(bdmpza)(O2C(CO)Ph)(NO)(PPh3)](+) (12) were formed in a reaction of the acetato 2a or the benzoylformato complex 3c with an excess of nitric oxide. Similar cationic carboxylato nitrosyl complexes [Ru(bdmpza)(O2CR)(NO)(PPh3)]BF4 (R = Me (13a), R = Ph (13b)) and 2-oxocarboxylato nitrosyl complexes [Ru(bdmpza)(O2C(CO)R)(NO)(PPh3)]BF4 (R = Me (14a), R = Et (14b), R = Ph (14c)) are also accessible via a reaction with NO[BF4]. X-ray crystal structures of the chlorido acetonitrile complex [Ru(bdmpza)Cl(NCMe)(PPh3)] (4), the pyridine complexes [Ru(bdmpza)(O2CMe)(PPh3)(py)] (7a) and [Ru(bdmpza)(O2CC(O)Et)(PPh3)(py)] (8b), the carbonyl complex [Ru(bdmpza)(O2CPh)(CO)(PPh3)] (9b), the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b), as well as the nitrosyl complex [Ru(bdmpza)(O2C(CO)Me)(NO)(PPh3)]BF4 (14a), are reported. The molecular structure of the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) revealed a rather unusual intramolecular SO2-O2CPh Lewis acid-base adduct.  相似文献   

12.
Chiu WH  Peng SM  Che CM 《Inorganic chemistry》1996,35(11):3369-3374
Two bis(amido)ruthenium(IV) complexes, [Ru(IV)(bpy)(L-H)(2)](2+) and [Ru(IV)(L)(L-H)(2)](2+) (bpy = 2,2'-bipyridine, L = 2,3-diamino-2,3-dimethylbutane, L-H = (H(2)NCMe(2)CMe(2)NH)(-)), were prepared by chemical oxidation of [Ru(II)(bpy)(L)(2)](2+) and the reaction of [(n-Bu)(4)N][Ru(VI)NCl(4)] with L, respectively. The structures of [Ru(bpy)(L-H)(2)][ZnBr(4)].CH(3)CN and [Ru(L)(L-H)(2)]Cl(2).2H(2)O were determined by X-ray crystal analysis. [Ru(bpy)(L-H)(2)][ZnBr(4)].CH(3)CN crystallizes in the monoclinic space group P2(1)/n with a = 12.597(2) ?, b = 15.909(2) ?, c = 16.785(2) ?, beta = 91.74(1) degrees, and Z = 4. [Ru(L)(L-H)(2)]Cl(2).2H(2)O crystallizes in the tetragonal space group I4(1)/a with a = 31.892(6) ?, c = 10.819(3) ?, and Z = 16. In both complexes, the two Ru-N(amide) bonds are cis to each other with bond distances ranging from 1.835(7) to 1.856(7) ?. The N(amide)-Ru-N(amide) angles are about 110 degrees. The two Ru(IV) complexes are diamagnetic, and the chemical shifts of the amide protons occur at around 13 ppm. Both complexes display reversible metal-amide/metal-amine redox couples in aqueous solution with a pyrolytic graphite electrode. Depending on the pH of the media, reversible/quasireversible 1e(-)-2H(+) Ru(IV)-amide/Ru(III)-amine and 2e(-)-2H(+) Ru(IV)-amide/Ru(II)-amine redox couples have been observed. At pH = 1.0, the E degrees is 0.46 V for [Ru(IV)(bpy)(L-H)(2)](2+)/[Ru(III)(bpy)(L)(2)](3+) and 0.29 V vs SCE for [Ru(IV)(L)(L-H)(2)](2+)/[Ru(III)(L)(3)](3+). The difference in the E degrees values for the two Ru(IV)-amide complexes has been attributed to the fact that the chelating saturated diamine ligand is a better sigma-donor than 2,2'-bipyridine.  相似文献   

13.
Reaction of [Ru(VI)(N)(sap)Cl] with excess NaN(3) affords a novel paramagnetic triazidoruthenium(III) complex [Ru(III)(sap)(N(3))(3)](2-), which is isolated as a PPh(4)(+) salt (1). Reaction of 1 with Ni(2+) and Co(2+) ions produce two isostructural hexanuclear [Ru(4)M(2)] compounds, [Ru(IV)(4)M(II)(2)(μ(3)-OMe)(2)(μ-OMe)(2)(μ-N)(2)(μ-N(3))(2)(μ-O(phenoxy))(2)(sap)(4) (MeOH)(4)] (M = Ni 2 or Co 3). The molecular structures of 1-3 have been determined by X-ray crystallography. 1 is a mononuclear ruthenium(III) compound where three azide ligands are bonded to ruthenium in a meridional fashion, while compounds 2 and 3 are isostructural hexanuclear compounds containing a defective face-sharing dicubane-like core with two missing vertexes. Variable-temperature dc magnetic susceptibility studies have been carried out for 2 and 3. These data indicate that there are four diamagnetic Ru(IV) ions in 2 and 3 and there is ferromagnetic interaction between the two Ni(2+) in 2 and Co(2+) in 3 via the methoxy bridges.  相似文献   

14.
Previously, the synthesis of compounds Ru(2)(D(3,5-Cl(2)Ph)F)(4-n)(O(2)CFc)(n)Cl (n = 1, 3a; 2, 4a), where D(3,5-Cl(2)Ph)F is N,N'-di(3,5-dichlorophenyl)formamidinate, from the carboxylate exchange reactions between Ru(2)(D(3,5-Cl(2)Ph)F)(4-n)(OAc)(n)Cl and ferrocene carboxylic acid was communicated. Reported herein is the preparation of analogous compounds Ru(2)(DmAniF)(4-n)(O(2)CFc)(n)Cl (n = 1, 3b; 2, 4b), where DmAniF is N,N'-di(3-methoxyphenyl)formamidinate, from Ru(2)(DmAniF)(4-n)(OAc)(n)Cl. Compounds 3 and 4 were characterized with various techniques including X-ray structural determinations of 3a and 4a. Voltammetric behaviors of compounds 3 and 4 were investigated, and stepwise one-electron ferrocene oxidations were observed for both compounds 4a and 4b. Spectral analysis of the monocations [4](+) indicated that they are the Robin-Day class II mixed valent [Fc···Fc](+) species. Measurement and fitting of magnetic data (χT) of 4a between 2 and 300 K revealed a typical zero-field splitting of a S = 3/2 center with D = 77 cm(-1), while those of [4a]BF(4) are consistent with the presence of S = 3/2 (Ru(2)) and S = 1/2 (Fc(+)) centers that are weakly coupled (zJ = -0.76 cm(-1)).  相似文献   

15.
Experimental and computational results for different ruthenium nitrosyl porphyrin complexes [(Por)Ru(NO)(X)] ( n+ ) (where Por (2-) = tetraphenylporphyrin dianion (TPP (2 (-) )) or octaethylporphyrin dianion (OEP (2-)) and X = H 2O ( n = 1, 2, 3) or pyridine, 4-cyanopyridine, or 4- N,N-dimethylaminopyridine ( n = 1, 0)) are reported with respect to their electron-transfer behavior. The structure of [(TPP)Ru(NO)(H 2O)]BF 4 is established as an {MNO} species with an almost-linear RuNO arrangement at 178.1(3) degrees . The compound [(Por)Ru(NO)(H 2O)]BF 4 undergoes two reversible one-electron oxidation processes. Spectroelectrochemical measurements (IR, UV-vis-NIR, and EPR) indicate that the first oxidation occurs on the porphyrin ring, as evident from the appearance of diagnostic porphyrin radical-anion vibrational bands (1530 cm (-1) for OEP (*-) and 1290 cm (-1) for TPP (*-)), from the small shift of approximately 20 cm (-1) for nu NO and from the EPR signal at g iso approximately 2.00. The second oxidation, which was found to be electrochemically reversible for the OEP compound, shows a 55 cm (-1) shift in nu NO, suggesting a partially metal-centered process. The compounds [(Por)Ru(NO)(X)]BF 4, where X = pyridines, undergo a reversible one-electron reduction. The site of the reduction was determined by spectroelectrochemical studies to be NO-centered with a ca. -300 cm (-1) shift in nu NO. The EPR response of the NO (*) complexes was essentially unaffected by the variation in the substituted pyridines X. DFT calculations support the interpretation of the experimental results because the HOMO of [(TPP)Ru(NO)(X)] (+), where X = H 2O or pyridines, was calculated to be centered at the porphyrin pi system, whereas the LUMO of [(TPP)Ru(NO)(X)] (+) has about 50% pi*(NO) character. This confirms that the (first) oxidation of [(Por)Ru(NO)(H 2O)] (+) occurs on the porphyrin ring wheras the reduction of [(Por)Ru(NO)(X)] (+) is largely NO-centered with the metal remaining in the low-spin ruthenium(II) state throughout. The 4% pyridine contribution to the LUMO of [(TPP)Ru(NO)(py)] (+) is correlated with the stability of the reduced form as opposed to that of the aqua complex.  相似文献   

16.
The synthesis, characterization, and photophysical properties of the N6-N5C bichromophoric [(bpy)2Ru(I)Ru(ttpy)][PF6]3 (bpy is 2,2'-bipyridine and ttpy is 4'-p-tolyl-2,2':6',2'-terpyridine) and [(bpy)2Ru(II)Ru(ttpy)][PF6]3 (I and II are bpy-dipyridylbenzene ditopic ligands bridged by an ethynyl and phenyl unit, respectively) complexes are reported together with the model mononuclear complexes [(bpy)2Ru(I)][PF6]2, [(bpy)2Ru(II)][PF6]2, [Ru(VI)(ttpy)][PF6] (VI is 3,5-di(2-pyridyl)-biphenyl) and [Ru(dpb)(ttpy)][PF(6)] (Hdpb is 1,3-di(2-pyridyl)-benzene). The electrochemical data show that there is little ground state electronic communication between the metal centers in the bimetallic complexes. Selective excitation of the N(5)C unit in the bichromophoric systems leads to luminescence typical for a bis-tridentate cyclometallated ruthenium complex and is similar to the [Ru(VI)(ttpy)][PF6] model complex. In contrast, the luminescence from the tris-bidentate N6 unit is efficiently quenched by energy transfer to the N5C unit. The energy transfer rate has been determined by femtosecond pump-probe measurements to 0.7 ps in the ethynyl-linked [(bpy)2Ru(I)Ru(ttpy)][PF6]3 and to 1.5 ps in the phenyl-linked [(bpy)2Ru(II)Ru(ttpy)][PF6]3 (in acetonitrile solution at 298 K), and is inferred to occur via a Dexter mechanism.  相似文献   

17.
An unrestricted density functional theory (UDFT) was applied to study the oxidation of ruthenium porphyrins, [RuP], via an interaction with molecular oxygen. The important role of dimeric [RuP] complexes, i.e. [RuP]-O2-[RuP], in the oxidation mechanism and particular in the cleavage of O-O bond of molecular oxygen has been studied. Geometries and relative Gibbs free energies of the intermediate Ru-complexes, i.e. dimeric oxo-Ru-porphyrins and O2Ru(II)-(or O2- Ru(III))-, ORu(IV)- and ORu(VI)O-porphyrins, were evaluated along the proposed reaction pathway. The detailed thermodynamic data of the oxidation reaction [Ru(II)P] --> O[Ru(IV)P] --> O[Ru(VI)P]O and important aspects of the vibrational spectra of an oxo-[RuP] has been presented.  相似文献   

18.
Ruthenium porphyrins [Ru(F(20)-TPP)(CO)] (F(20)-TPP = 5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato dianion) and [Ru(Por*)(CO)] (Por = 5,10,15,20-tetrakis[(1S,4R,5R,8S)-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanoanthracen-9-yl]porphyrinato dianion) catalyzed intramolecular amidation of sulfamate esters p-X-C(6)H(4)(CH(2))(2)OSO(2)NH(2) (X = Cl, Me, MeO), XC(6)H(4)(CH(2))(3)OSO(2)NH(2) (X = p-F, p-MeO, m-MeO), and Ar(CH(2))(2)OSO(2)NH(2) (Ar = naphthalen-1-yl, naphthalen-2-yl) with PhI(OAc)(2) to afford the corresponding cyclic sulfamidates in up to 89% yield with up to 100% substrate conversion; up to 88% ee was attained in the asymmetric intramolecular amidation catalyzed by [Ru(Por)(CO)]. Reaction of [Ru(F(20)-TPP)(CO)] with PhI[double bond]NSO(2)OCH(2)CCl(3) (prepared by treating the sulfamate ester Cl(3)CCH(2)OSO(2)NH(2) with PhI(OAc)(2)) afforded a bis(imido)ruthenium(VI) porphyrin, [Ru(VI)(F(20)-TPP)(NSO(2)OCH(2)CCl(3))(2)], in 60% yield. A mechanism involving reactive imido ruthenium porphyrin intermediate was proposed for the ruthenium porphyrin-catalyzed intramolecular amidation of sulfamate esters. Complex [Ru(F(20)-TPP)(CO)] is an active catalyst for intramolecular aziridination of unsaturated sulfonamides with PhI(OAc)(2), producing corresponding bicyclic aziridines in up to 87% yield with up to 100% substrate conversion and high turnover (up to 2014).  相似文献   

19.
The methylhydrazine complex [Ru(NH(2)NHMe)(PyP)(2)]Cl(BPh(4)) (PyP=1-[2-(diphenylphosphino)ethyl]pyrazole) was synthesised by addition of methylhydrazine to the bimetallic complex [Ru(mu-Cl)(PyP)(2)](2)(BPh(4))(2). The methylhydrazine ligand of the ruthenium complex has two different binding modes: side-on (eta(2)-) when the complex is in the solid state and end-on (eta(1)-) when the complex is in solution. The solid-state structure of [Ru(PyP)(2)(NH(2)NHMe)]Cl(BPh(4)) was determined by X-ray crystallography. 2D NMR spectroscopic experiments with (15)N at natural abundance confirmed that in solution the methylhydrazine is bound to the metal centre by only the -NH(2) group and the ruthenium complex retains an octahedral conformation. Hydrazine complexes [RuCl(PyP)(2)(eta(1)-NH(2)NRR')]OSO(2)CF(3) (in which R=H, R'=Ph, R=R'=Me and NRR'=NC(5)H(10)) were formed in situ by the addition of phenylhydrazine, 1,1-dimethylhydrazine and N-aminopiperidine, respectively, to a solution of the bimetallic complex [Ru(mu-Cl)(PyP)(2)](2)(OSO(2)CF(3))(2) in dichloromethane. These substituted hydrazine complexes of ruthenium were shown to exist in an equilibrium mixture with the bimetallic starting material.  相似文献   

20.
Huang JS  Yu GA  Xie J  Wong KM  Zhu N  Che CM 《Inorganic chemistry》2008,47(20):9166-9181
Reduction of [Fe(III)(Por)Cl] (Por = porphyrinato dianion) with Na2S2O4 followed by reaction with excess PH2Ph, PH2Ad, or PHPh2 afforded [Fe(II)(F20-TPP)(PH2Ph)2] (1a), [Fe(II)(F20-TPP)(PH2Ad)2] (1b), [Fe(II)(F20-TPP)(PHPh2)2] (2a), and [Fe(II)(2,6-Cl2TPP)(PHPh2)2] (2b). Reaction of [Ru(II)(Pc)(DMSO)2] (Pc = phthalocyaninato dianion) with PH2Ph or PHPh2 gave [Ru(II)(Pc)(PH2Ph)2] (3a) and [Ru(II)(Pc)(PHPh2)2] (4). [Ru(II)(Pc)(PH2Ad)2] (3b) and [Ru(II)(Pc)(PH2Bu(t))2] (3c) were isolated by treating a mixture of [Ru(II)(Pc)(DMSO)2] and O=PCl2Ad or PCl2Bu(t) with LiAlH4. Hydrophosphination of CH2=CHR (R = CO2Et, CN) with [Ru(II)(F20-TPP)(PH2Ph)2] or [Ru(II)(F20-TPP)(PHPh2)2] in the presence of (t)BuOK led to the isolation of [Ru(II)(F20-TPP)(P(CH2CH2R)2Ph)2] (R = CO2Et, 5a; CN, 5b) and [Ru(II)(F20-TPP)(P(CH2CH2R)Ph2)2] (R = CO2Et, 6a; CN, 6b). Similar reaction of 3a with CH2=CHCN or MeI gave [Ru(II)(Pc)(P(CH2CH2CN)2Ph)2] (7) or [Ru(II)(Pc)(PMe2Ph)2] (8). The reactions of 4 with CH2=CHR (R = CO2Et, CN, C(O)Me, P(O)(OEt)2, S(O)2Ph), CH2=C(Me)CO2Me, CH(CO2Me)=CHCO2Me, MeI, BnCl, and RBr (R = (n)Bu, CH2=CHCH2, MeC[triple bond]CCH2, HC[triple bond]CCH2) in the presence of (t)BuOK afforded [Ru(II)(Pc)(P(CH2CH2R)Ph2)2] (R = CO2Et, 9a; CN, 9b; C(O)Me, 9c; P(O)(OEt)2, 9d; S(O)2Ph, 9e), [Ru(II)(Pc)(P(CH2CH(Me)CO2Me)Ph2)2] (9f), [Ru(II)(Pc)(P(CH(CO2Me)CH2CO2Me)Ph2)2] (9g), and [Ru(II)(Pc)(PRPh2)2] (R = Me, 10a; Bu(n), 10b; Bn, 10c; CH2CH=CH2, 10d; CH2C[triple bond]CMe, 10e; CH=C=CH2, 10f). X-ray crystal structure determinations revealed Fe-P distances of 2.2597(9) (1a) and 2.309(2) A (2bx 2 CH2Cl2) and Ru-P distances of 2.3707(13) (3b), 2.373(2) (3c), 2.3478(11) (4), and 2.3754(10) A (5b x 2 CH2Cl2). Both the crystal structures of 3b and 4 feature intermolecular C-H...pi interactions, which link the molecules into 3D and 2D networks, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号