首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high level of ab initio and several density functional theory studies were performed with the target being to elucidate structural, spectroscopic, and energetic properties of triafulvene, cyclobutadiene, and tetrahedrane as three C4H4 isomers. For triafulvene all of the experimental values are available, but for cyclobutadiene only the IR spectra is known, while for tetrahedrane none of these physical values have been estimated experimentally. An excellent agreement between the computed and the experimental values were obtained where data are available, which makes it confident that the computed data should be very accurate. New structural data, IR spectra, and enthalpies of formation for both cyclobutadiene and tetrahedrane are offered.  相似文献   

2.
A systematic study was performed on the small molecular systems built from phosphor, hydrogen and fluorine with the target being to evaluate accurately their ionization potentials and electron affinities, as well as influence fluorine on the ionization potential of phosphor as a central atom. To determine the accuracy of hybrid density functional methods for computing those energies, ionization energies for hydrogen, fluorine and phosphor were calculated and compared with the experimental and CBSQ values. To demonstrate the accuracy of this method, both the ionization potential and the electron affinity for phosphorus and fluorine atoms were calculated and compared with the experimental data. For both PF and PF2, an identical electron affinity of 0.72 eV and for PH and PHF 1.0 eV were suggested.  相似文献   

3.
The symmetry unrestricted C36F2 isomers formed from fullerene C36, the initial symmetry of which is C6v, C6h, or D2d, have been extensively studied with semi-empirical (AM1 and PM3) calculations. Based on the relationship between the isomer's stability and the adding positions, three patterns of the adding sites of F2 moiety in the additive reactions have been deducted. The results of the π-orbital axis vector (POAV) analysis indicate that the chemical reactivity of C36 is the result of the high strain in the C36 cage. But, in order to form stable compounds, the effects, which guide the F2 moiety to select carbon atoms in the C36 cage, are dominated by the conjugate effect in C36F2 system rather than the strain release in the C36 cage.  相似文献   

4.
Twenty-two isomers/conformers of C3H6S+√ radical cations have been identified and their heats of formation (ΔHf) at 0 and 298 K have been calculated using the Gaussian-3 (G3) method. Seven of these isomers are known and their ΔHf data are available in the literature for comparison. The least energy isomer is found to be the thioacetone radical cation (4+) with C2v symmetry. In contrast, the least energy C3H6O+√ isomer is the 1-propen-2-ol radical cation. The G3 ΔHf298 of 4+ is calculated to be 859.4 kJ mol−1, ca. 38 kJ mol−1 higher than the literature value, ≤821 kJ mol−1. For allyl mercaptan radical cation (7+), the G3 ΔHf298 is calculated to be 927.8 kJ mol−1, also not in good agreement with the experimental estimate, 956 kJ mol−1. Upon examining the experimental data and carrying out further calculations, it is shown that the G3 ΔHf298 values for 4+ and 7+ should be more reliable than the compiled values. For the five remaining cations with available experimental thermal data, the agreement between the experimental and G3 results ranges from fair to excellent.

Cation CH3CHSCH2+√ (10+) has the least energy among the eleven distonic radical cations identified. Their ΔHf298 values range from 918 to 1151 kJ mol−1. Nevertheless, only one of them, CH2=SCH2CH2+√ (12+), has been observed. Its G3 ΔHf298 value is 980.9 kJ mol−1, in fair agreement with the experimental result, 990 kJ mol−1.

A couple of reactions involving C3H6S+√ isomers CH2=SCH2CH2+√ (12+) and trimethylene sulfide radical cation (13+) have also been studied with the G3 method and the results are consistent with experimental findings.  相似文献   


5.
Gaussian-2 ab initio calculations were performed to examine the six modes of unimolecular dissociation of cis-CH3CHSH+ (1+), trans-CH3CHSH+ (2+), and CH3SCH2+ (3+): 1+→CH3++trans-HCSH (1); 1+→CH3+trans-HCSH+ (2); 1+→CH4+HCS+ (3); 1+→H2+c-CH2CHS+ (4); 2+→H2+CH3CS+ (5); and 3+→H2+c-CH2CHS+ (6). Reactions (1) and (2) have endothermicities of 584 and 496 kJ mol−1, respectively. Loss of CH4 from 1+ (reaction (3)) proceeds through proton transfer from the S atom to the methyl group, followed by cleavage of the C–C bond. The reaction pathway has an energy barrier of 292 kJ mol−1 and a transition state with a wide spectrum of nonclassical structures. Reaction (4) has a critical energy of 296 kJ mol−1 and it also proceeds through the same proton transfer step as reaction (3), followed by elimination of H2. Formation of CH3CS+ from 2+ (reaction (5)) by loss of H2 proceeds through protonation of the methine (CH) group, followed by dissociation of the H2 moiety. Its energy barrier is 276 kJ mol−1. On both the MP2/6-31G* and QCISD/6-31G* potential-energy surfaces, the H2 1,1-elimination from 3+ (reaction (6)) proceeds via a nonclassical intermediate resembling c-CH3SCH2+ and has a critical energy of 269 kJ mol−1.  相似文献   

6.
Electronic energies, geometries, and harmonic vibration frequencies for the reactants, products, and transition state for the Cl(3P)+C2H6→C2H5+HCl abstraction reaction were evaluated at the HF and MP2 levels using several correlation consistent polarized-valence basis sets. Single-point calculations at PMP2, MP4, QCISD(T), and CCSD(T) levels were also carried out. The values of the forward activation energies obtained at the MP4/cc-pVTZ, QCISD(T)/cc-pVTZ, and CCSD(T)/cc-pVTZ levels using the MP2/cc-pVTZ structures are equal to −0.1, −0.4, and −0.3 kcal/mol, respectively. The experimental value is equal to 0.3±0.2 kcal/mol. We found that the MP2/aug-cc-pVTZ adiabatic vibration energy for the reaction (−2.4 kcal/mol) agrees well with the experimental value −(2.2–2.6) kcal/mol. Rate constants calculated with the zeroth-order interpolated variational transition state (IVTST-0) method are in good agreement with experiment. In general, the theoretical rate constants differ from experiment by, at most, a factor of 2.6.  相似文献   

7.
High level computational studies were performed with the aim being to explore the possibility of converting the experimentally available triafulvene into the hard-to-detect cyclobutadiene. The method is based on the simple approach used to excite triafulvene into the triplet state, and then through various reaction channels, come to the aromatic triplet cyclobutadiene. Triplet cyclobutadiene is only a few kcal/mol higher in energy than singlet cyclobutadiene and should be easily relaxed into the latter. Several reaction pathways that include only a concerted mechanism, as well as reaction pathways that include the radical formation–recombination were also explored. Some possible approaches for experimentally obtaining the singlet or triplet cyclobutadiene were suggested.  相似文献   

8.
The detailed singlet and triplet potential energy surfaces of C3H2 involving nine isomers and 13 transition structures are studied at the G3 level of theory. The rearrangement mechanisms and the electronic properties of various isomers in a broad energy range have been studied in both singlet and triplet states. Cyclopropenylidene and propargylene are found to be the most stable isomers in the singlet and triplet states, respectively. The singlet isomers are found to be more kinetically stable species as a result of high conversion barriers through which they pass. The calculations indicate that cyclopropyne in its triplet state is the least kinetically stable isomer. It is realized that the G3 method comprises both computational cost and accuracy and thus can be applied to investigation of potential energy surface of small molecules.  相似文献   

9.
Ab initio molecular orbital calculations of nuclear spin-spin coupling constants in PH2, PH3, PH+4 and P2H4 have been carried out employing SCF perturbation theory. Basis set dependence of all the four contributing terms has been studied in order to find the criterion for the selection of basis sets to be employed for computing this property. The dependence of the coupling constants of PH2 on its geometry has also been found. This study also discusses the requirement for satisfactory computation of couplings in cases where none of the coupling nuclei is a proton. It is found that bond-centred functions along with at least double zeta basis sets reproduce coupling constants quite satisfactorily. In all the cases studied, uncontracted core basis functions yield couplings which are in better agreement with experimental couplings than those obtained with contracted core functions.  相似文献   

10.
The elementary reaction of C2H3+ NO has been reported for the first time in this paper.C2H3 radical was produced by laser photolysis of vinyl bromide at 248 nm. Vibrationally excited reaction products H2CO,NCO and HCN were observed. Two exothermic reaction channels leading to HCN+ H2CO and CH3+ NCO are identified.  相似文献   

11.
采用密度泛函理论(DFT)研究了C_(3)H_(8)和CO_(2)在Ni_(x)Cu_(y)-B_(24)N_(28)(x+y=4,x=1、2、3、4)表面吸附及速控步骤反应机理.计算了C_(3)H_(8)、CO_(2)和相应中间体在Ni_(x)Cu_(y)-B_(24)N_(28)表面的吸附能以及6条可能路径下的反应热和活化能.计算结果表明,C_(3)H_(8)和CO_(2)在Ni_(x)Cu_(y)-B_(24)N_(28)表面是物理吸附,C_(3)H_(8)+CO_(2)→CH_(3)CHCH_(3)+OCOH是最有利的路径,其在不同催化剂表面的活化能顺序是NiCu_(3)-B_(24)N_(28)(1.42 eV)、Ni_(2)Cu_(2)-B_(24)N_(28)(1.57 eV)、Ni_(3)Cu-B_(24)N_(28)(1.62 eV)、Ni_(4)-B_(24)N_(28)(1.75 eV).由此可知,在Ni_(x)Cu_(y)-B_(24)N_(28)催化CO_(2)氧化C_(3)H_(8)的体系中,Cu含量直接影响其催化活性,即NiCu_(3)-B_(24)N_(28)用于催化CO_(2)氧化C_(3)H_(8)有一定优势.  相似文献   

12.
The selective catalytic reduction (SCR) of NO by propane in excess oxygen-containing gas mixture was studied on Co/Al2O3 catalyst. The oxygen concentration is very important for the reaction. The NO conversion to N2 without oxygen is 3% at 800 K and when the O2 concentration is raised up to 8% the NO conversion reaches its maximum value of 60% at 800 K. Characterization results by TPR and UV-Vis spectroscopy show that in the catalyst, species strongly interacting with tetrahedral and octahedral Co2+ ions in the support are present. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Theoretical investigations on the kinetics of the elementary reaction H2O2+H→H2O+OH were performed using the transition state theory (TST). Ab initio (MP2//CASSCF) and density functional theory (B3LYP) methods were used with large basis set to predict the kinetic parameters; the classical barrier height and the pre-exponential factor. The ZPE and BSSE corrected value of the classical barrier height was predicted to be 4.1 kcal mol−1 for MP2//CASSCF and 4.3 kcal mol−1 for B3LYP calculations. The experimental value fitted from Arrhenius expressions ranges from 3.6 to 3.9 kcal mol−1. Thermal rate constants of the title reaction, based on the ab initio and DFT calculations, was evaluated for temperature ranging from 200 to 2500 K assuming a direct reaction mechanism. The modeled ab initio-TST and DFT–TST rate constants calculated without tunneling were found to be in reasonable agreement with the observed ones indicating that the contribution of the tunneling effect to the reaction was predicted to be unimportant at ambient temperature.  相似文献   

14.
The details of weak C–Hπ interactions that control several inter and intramolecular structures have been studied experimentally and theoretically for the 1:1 C2H2–CHCl3 adduct. The adduct was generated by depositing acetylene and chloroform in an argon matrix and a 1:1 complex of these species was identified using infrared spectroscopy. Formation of the adduct was evidenced by shifts in the vibrational frequencies compared to C2H2 and CHCl3 species. The molecular structure, vibrational frequencies and stabilization energies of the complex were predicted at the MP2/6-311+G(d,p) and B3LYP/6-311+G(d,p) levels. Both the computational and experimental data indicate that the C2H2–CHCl3 complex has a weak hydrogen bond involving a C–Hπ interaction, where the C2H2 acts as a proton acceptor and the CHCl3 as the proton donor. In addition, there also appears to be a secondary interaction between one of the chlorine atoms of CHCl3 and a hydrogen in C2H2. The combination of the C–Hπ interaction and the secondary ClH interaction determines the structure and the energetics of the C2H2–CHCl3 complex. In addition to the vibrational assignments for the C2H2–CHCl3 complex we have also observed and assigned features owing to the proton accepting C2H2 submolecule in the acetylene dimer.  相似文献   

15.
Pseudostate decomposition of static dipole polarizabilities for ground state H2+ from a Givens-Householder diagonalization of the excitation operator (H" height="17" width="20">0E0) over an N-term basis of appropriate symmetry allows for a rapidly convergent evaluation of C6 dispersion coefficients for H2+–H2+. 27-term pseudospectra of hypergeneralized James functions with a 30-term GGJ+ unperturbed wavefunction with an optimized scale factor δ=0.918 at R=20 give C6 and γ6 values that are accurate to no less than nine significant figures.  相似文献   

16.
CCl2自由基与H2O分子反应动力学研究   总被引:2,自引:0,他引:2  
用213 nm激光光解CCl4产生CCl2自由基,用LP LIF技术测定了室温下基态CCl2自由基与H2O分子的反应速率常数为(5.45±0.95)×10-14 cm3•molecule-1•s-1.在G2MP2理论水平上计算了CCl2+H2O反应的最低单重态势能面,揭示了插入与加成 消除两种反应机理,得到了三个可能的产物通道:HCl+HClCO、HCl+trans ClCOH以及HCl+cis ClCOH.并用RRKM TST和传统过渡态理论计算了这三个通道的分支比及其温度效应.结果说明在低温下(273 K),插入机理的产物通道的分支比远大于加成 消除机理的产物通道, HCl+HClCO是主要产物,分支比为77.4%,其次是HCl+cis ClCOH,分支比为22.6%.而在高温下(3000 K),加成 消除机理的反应通道大于插入机理, HCl+trans ClCOH分支比为82.3%.  相似文献   

17.
The geometrical structures of the C3H3 anion are surveyed at the coupled-cluster doubles (CCD) level of theory with the aug-cc-pVDZ basis set. To clarify the CCD geometries, the stable two isomers -- propynl-l-yl 1 and allenyl 2 anions -- are further optimized at the coupled-cluster singles, doubles (triples) (CCSD(T)) level of theory both with the aug-cc-pVDZ and aug-cc-pVTZ basis sets. The final energies are calculated at the CCSD(T) and the complete active space self-consistent field (CASSCF) multi-reference internally contracted CI (MRCI) levels of theory with the aug-cc-pVTZ basis set. At the MRCI level of theory including both the corrections due to the cluster energies (MRCI+Q) and the zero-point vibrational energies, the allenyl anion 2 is about 1.3 kcal mol−1 lower in energy than the propynl-l-yl anion 1. These results contrast with the previous theoretical estimates, where the propynl-l-yl anion 1 is 2-3 kcal mol−1 lower in energy than the allenyl anion 2. The activation energies of the intramolecular hydrogen transfer in the 1 → 2 conversion reactions are 63.5 kcal mol−1 at the MRCI+Q level of theory with the aug-cc-pVTZ basis set including the zero-point energy corrections. The adiabatic electron affinity of the planer propargyl (H2CCCH) radical, which is the global minimum of the C3H3 radical, is calculated to be 0.976 eV (after correction for the zero-point energy changes) at the CCSD(T) level of theory with the aug-cc-pVTZ basis set. The present electron affinity is in fairly good agreement with the experimental one (0.893 eV) observed by Oakes and Ellison.  相似文献   

18.
The thermally unstable adduct TpMe2Ir(C2H4)(DMAD), which was generated “in situ” by the reaction of DMAD with TpMe2Ir(C2H4)2 (1) at low temperature, reacted with different carboxylic acids to produce the following compounds: TpMe2Ir(E-C(CO2Me)CH(CO2Me))(H2O)(OC(O)C6H4R), (R = H, 2a; o-OH, 2b; o-Cl, 2c; m-Cl, 2d; o-NO2, 2e; m-NO2, 2f;o-Me, 2g;p-Me, 2h) and TpMe2Ir(E-C(CO2Me)CH(CO2Me))(H2O)(OC(O)Me) 3. In the reaction of derivative 2a with Lewis bases, TpMe2Ir(E-C(CO2Me)CH(CO2Me))(L)(OC(O)C6H5), (L = Py, 4a; m-Br-Py, 4b; m-Cl-Py, 4c; NCMe, 5) were obtained, of which 4b and 4c were isolated as a mixture of two isomers in which the substituted pyridine ring was present at different rotational orientations. All new compounds prepared were characterized by 1H and 13C{1H} NMR spectroscopy, the structure of compounds 2d, 2h and 4a being determined by X-ray diffraction analysis. DFT was used to analyze the relative stability and the structural orientation of the isomers.  相似文献   

19.
利用凝胶溶胶法和浸渍法制备了Ce-Fe/Al2O3/cordierite催化剂,实验研究了其催化丙烷选择性还原NO的特性。结果表明,当铈的负载量从1%增加至5%时,Ce-Fe/Al2O3/cordierite的C3H8-SCR性能先增强后减弱,3.5Ce-Fe/Al2O3/cordierite具有最佳的脱硝性能,在有氧条件下,600℃时可实现96.5%的脱硝效率。Ce的加入能够提升Fe/Al2O3/cordierite催化剂的抗硫性能。烟气中通入0.02%的SO2后,3.5Ce-Fe/Al2O3/cordierite催化丙烷还原NO的转化率始终维持在93%,而没有经过Ce修饰的Fe/Al2O3/cordierite的NO转化率从88%下降为80%左右。利用XRD、N2吸附-脱附、SEM、H2-TPR、吡啶吸附红外光谱等手段研究了催化剂的物理化学性质。结果表明,加入助剂铈能与Fe形成了固溶体,增加催化剂表面Lewis酸浓度和氧化还原能力,从而提高了催化丙烷还原NO的性能。过多的铈引入会减少Fe2O3结晶体的形成,不利于在C3H8-SCR反应中形成NO2/NO3-物种,从而导致NO还原效率下降。  相似文献   

20.
The hydrogen abstraction reactions of C2F5CHO with OH radicals and Cl atoms have been investigated theoretically by a dual-level direct dynamics method. In this study, the optimized geometries and frequencies of the stationary points are calculated at the MP2/cc-pVDZ level of theory. The energies of the stationery points and the selected points along the minimum energy paths are further refined at the MC-QCISD level using the MP2 geometries. Complexes with energies less than those of the reactants or products are located at the entrance or the exit channels of the two reactions. This result indicates that both of reactions proceed via indirect reaction mechanisms. The enthalpies of formation for the reactant C2F5CHO and the product radical C2F5CO are estimated by isodesmic reactions at the MC-QCISD//MP2/cc-pVDZ level. At the same level, the rate constants are calculated by canonical variational transition state theory (CVT) incorporating with the small-curvature tunneling correction (SCT) in the temperature range 200–1000 K. Good agreement between the calculated and experimental rate constants is obtained at the room temperature. Due to the lack of the kinetic data of these reactions, the fitted three-parameter expressions based on the CVT/SCT rate constants within 200–1000 K are k1 = 1.64 × 10−24 T4.33 exp (−566.1/T) and k2 = 6.33 × 10−15 T1.35 exp (550.3/T) cm3 molecule−1 s−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号