首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
考虑任意阻抗壁面条件管腔结构声场特性分析   总被引:2,自引:1,他引:1       下载免费PDF全文
针对任意阻抗壁面条件一维管腔声学系统建模,对系统动力学特性进行预报。为了满足阻抗边界条件对声压一阶导数连续性要求,管腔声压函数通过在标准傅里叶级数端点位置引入边界光滑辅助多项式进行构建。结合壁面阻抗声学边界和管腔声学Helmholtz控制微分方程得到强形式标准特征值问题,获得相应的声学模态信息。在数值仿真中,通过算例给出各种边界条件下管腔声学模态频率、声压振型、声压和质点振速频率响应曲线,与现有文献中相关结果进行对比,充分验证了本文求解方法的正确性和有效性,证明该方法可对任意阻抗壁面条件管腔系统声学特性进行准确预报。  相似文献   

2.
Two types of precursors propagating at the speed of sound in a pure liquid have been revealed in the experiments on the evolution of pressure pulses in a gas-liquid mixture; at the same time, the main pressure pulse propagates at a low equilibrium speed of sound and its evolution is described by the Burgers-Korteweg-de Vries equation. The first high-frequency precursor is a complete analog of a classical Sommerfeld precursor, because the resonance dispersion equation for a bubble mixture coincides with that for insulators in the Lorentz model, and oscillates at a frequency close to the “plasma frequency.” The second low-frequency precursor has been revealed in this work. The frequency of the low-frequency precursor is close to the resonance frequency of pulsations of bubbles, which is almost an order of magnitude lower than the frequency of the high-frequency precursor. The low-frequency precursor has a much larger amplitude of pulsations and smaller damping and is not described within the homogeneous model of the gas-liquid mixture. The observed phenomenon of low-frequency precursors has been explained within a simple heterogeneous model of a bubble liquid.  相似文献   

3.
Foldyna J  Sitek L  Habán V 《Ultrasonics》2006,44(Z1):e1457-e1460
Recently, substantial attention is paid to the development of methods of generation of pulsations in high-pressure systems to produce pulsating high-speed water jets. The reason is that the introduction of pulsations into the water jets enables to increase their cutting efficiency due to the fact that the impact pressure (so-called water-hammer pressure) generated by an impact of slug of water on the target material is considerably higher than the stagnation pressure generated by corresponding continuous jet. Special method of pulsating jet generation was developed and tested extensively under the laboratory conditions at the Institute of Geonics in Ostrava. The method is based on the action of acoustic transducer on the pressure liquid and transmission of generated acoustic waves via pressure system to the nozzle. The purpose of the paper is to present results obtained during the research oriented at the determination of acoustic wave propagation in high-pressure system. The final objective of the research is to solve the problem of transmission of acoustic waves through high-pressure water to generate pulsating jet effectively even at larger distances from the acoustic source. In order to be able to simulate numerically acoustic wave propagation in the system, it is necessary among others to determine dependence of the sound speed and second kinematical viscosity on operating pressure. Method of determination of the second kinematical viscosity and speed of sound in liquid using modal analysis of response of the tube filled with liquid to the impact was developed. The response was measured by pressure sensors placed at both ends of the tube. Results obtained and presented in the paper indicate good agreement between experimental data and values of speed of sound calculated from so-called "UNESCO equation". They also show that the value of the second kinematical viscosity of water depends on the pressure.  相似文献   

4.
A simple oscillatory, slightly compressible, fluid flow model in a thick-walled piezoelectric tube used in a drop-on-demand inkjet print head is developed from the point of view of fluid-structure interaction to take account of pressure wave propagation and pressure loading opposing wall motion. A frequency sweep is performed computationally using the model revealing the first acoustic fluid-structure resonance frequency and the influence of fluid viscosity. The validity of the model, with given information on the speed of sound in a fluid, is evaluated by comparing the theoretically predicted resonance frequency to the experimentally measured resonance frequency. In addition, the intrinsic speed of sound can be easily computed using the measured acoustic resonance frequency and this computed speed of sound agrees closely with speeds of sound reported in the literature.  相似文献   

5.
A modeling method for the dynamic characteristics analysis of a slender acoustical cavity with impedance end conditions is established. In order to satisfy the continuity requirement at impedance ends for the first order differential of sound pressure, field function is constructed as the standard Fourier series supplemented by boundary smoothed auxiliary polynomials. System characteristic equation is derived by solving the governing differential equation and impedance acoustic boundary of slend...  相似文献   

6.
The periodically blown out exhaust gas of a combustion engine may excite structural vibrations of the exhaust system. In addition to the noise of the orifice, these vibrations contribute to the overall noise radiation of the exhaust system. In this work, the excitation of structural vibrations of a rear muffler via the acoustic path is investigated both in experiments and simulations. In both cases transfer functions from the acoustic pressure at the inlet to the structural deflection on the surface of the rear muffler are determined and compared to each other. For the simulation an FE-FE (finite element) coupling is applied to account for the fluid-structure interaction. To efficiently predict the fluid-structure coupled behavior, a model reduction technique for the finite element method based on the Craig-Bampton method and the Rubin method is presented. In a last step, the sound radiation is evaluated by solving the exterior acoustic problem with the fast multipole boundary element method. For this purpose, the results of the FE computation are used as boundary datum.  相似文献   

7.
An acoustic impedance pump is comprised of a compressible section coupled at both ends to sections of different acoustic impedances. Liquid can be pumped from one end to another if the compressible section is actuated at certain locations. This paper presents an analytical model on the acoustic pumping effect in microchannels. A one-dimensional wave equation is developed for acoustic pressures in the compressible section, taking into account the actuations as acoustic source terms. The solution for the acoustic pressure is a set of standing waves established inside the compressible section, corresponding to the actuations. The pumping effect is attributed to the second-order terms of the acoustic pressures. Two control parameters are identified. One is the resonance frequency associated with the sound wave speed and length of the compressible section, and the other is the damping factor. The analytical results are compared with the experimental data, and a qualitative agreement is observed in terms of frequency characteristics of the pumping pressure.  相似文献   

8.
声波在水-含气沉积物界面的反射   总被引:2,自引:1,他引:1       下载免费PDF全文
郑广赢  黄益旺  华健 《声学学报》2018,43(6):961-967
含气泡海洋沉积物的声学特性是海底探测的重要问题。为了研究气泡存在对水-含气沉积物界面声反射系数的影响,本文基于气泡振动修正的Biot波动方程推导了气泡存在修正的Biot弹性模量,并结合水-沉积物界面的“开孔”边界条件推导了声波从水入射到水-含气沉积物界面的反射系数。数值分析表明气泡的振动导致反射系数呈现显著的频率特性。在气泡共振频率附近,由于气泡的共振引发的强散射和强衰减,使得反射系数很大,无论以何种角度入射,声波都很难进入含气泡的沉积物。本文研究结果表明,气泡半径、含量、声波频率以及入射角度都是影响水-含气沉积物界面反射系数的主要因素。   相似文献   

9.
This communication is devoted to theoretical analysis of the dynamics of a solitary cavitation bubble pulsating in a compressible viscous liquid under the action of a nonuniform acoustic field. The system of two nonlinear ordinary second-order differential equations is integrated numerically. In the range of acoustic field parameters corresponding to the principal resonance region, the bubble performs large-scale spatial oscillations. It is shown that in a very small range of initial radii, the bubble stops its oscillatory motion due to stochastic pulsations and is expelled into the region of the acoustic-pressure block. Therefore, stochastic pulsations of the bubble radically change the form of the solution to the system of the above-mentioned equations.  相似文献   

10.
Design sensitivity analysis for sequential structural-acoustic problems   总被引:1,自引:0,他引:1  
A design sensitivity analysis of a sequential structural-acoustic problem is presented in which structural and acoustic behaviors are de-coupled. A frequency-response analysis is used to obtain the dynamic behavior of an automotive structure, while the boundary element method is used to solve the pressure response of an interior, acoustic domain. For the purposes of design sensitivity analysis, a direct differentiation method and an adjoint variable method are presented. In the adjoint variable method, an adjoint load is obtained from the acoustic boundary element re-analysis, while the adjoint solution is calculated from the structural dynamic re-analysis. The evaluation of pressure sensitivity only involves a numerical integration process for the structural part. The proposed sensitivity results are compared to finite difference sensitivity results with excellent agreement.  相似文献   

11.
A theory of generation of anti-Stokes radiation on the eigenvibrations in a suspension of cylindrical nanoparticles in the field of two copropagating electromagnetic pump waves has been developed. Surface ponderomotive forces are shown to induce acoustic vibrations and dipolemoments of nanoparticles at the anti-Stokes frequency. Under these conditions, the scattering efficiency depends on the dielectric characteristics of the solution and the acoustic parameters of the liquid and solid fractions of the suspension. Experiments on stimulated low-frequency Raman scattering of laser radiation in aqueous suspensions of tobacco mosaic virus in a buffer solution have been performed. A coherent signal of the Stokes component with a frequency shift of ≈60GHz is detected; this value is in good agreement with the estimated frequency shift for stimulated excitation of eigenvibrations of cylindrical nanoparticles in a liquid: ≈50 GHz.  相似文献   

12.
板厚对无障薄板声辐射特性影响的分析   总被引:2,自引:0,他引:2       下载免费PDF全文
刘宝  王德石  周奇郑 《声学学报》2017,42(5):593-600
分析无障薄板的声辐射特性时通常忽略板厚对格林函数的影响而采用双层势计算.本文考虑板厚引起的声辐射阻抗,采用混合势计算结构表面声压与振速,并分析板厚对声辐射参数的影响。根据交界相容性条件,采用边界积分方程分别表示平板上下表面的声压和振速,并合并同类项.进一步将结构的动力方程代入混合势形式的振速方程中,离散声压差值和板的位移为振动模态叠加的形式,获得二重积分形式的声辐射阻抗,从而求解振动模态系数,确定声辐射特性参数.以水下简支矩形板为例计算对比了声辐射参数,并讨论了其对板厚的敏感性。结果表明:板厚引起的声辐射阻抗对声辐射参数的大小影响较小,但随着频率的增加致使共振频率发生较大偏移;在相同阶数的共振频率范围内,板厚度越大,采用双层势计算的误差越大。   相似文献   

13.
As an extension of previous work on low frequency fundamental mode acoustic transmission through the walls of rectangular ducts, results are presented here on the transmission of internally propagated higher order acoustic modes through the duct walls. Subject to various assumptions, it is possible to obtain a closed form solution to the structural wave equation governing the motion of the duct's walls, and this is used to predict the response of the walls to the internal pressure field. The resultant acoustic radiation is estimated here by assuming that the duct radiates like a circular cylinder with the same surface velocity distribution. Both experimental and theoretical results are given and agreement between the two is tolerably good.  相似文献   

14.
The response of a dynamical flame model to imposed acoustic accelerations is studied analytically and numerically. Through linear stability analyses, two analytical approximations for the primary and the parametric stability boundaries are found. The approximation for the primary instability boundary is accurate for any periodic accelerations, in the limit of large acoustic frequencies. The critical acoustic amplitude u a for Landau–Darrieus instability suppression is identified and found to depend only on the density contrast and the shape of the periodic acoustic stimuli. The proposed model evolution equation is next integrated numerically with various imposed acoustic accelerations; the primary and parametric flame responses are identified. It is shown analytically and numerically that in the presence of a fully developed, yet weakened by acoustics, Landau–Darrieus (or primary) instability the wrinkle amplitude and the mean flame speed oscillate at the same frequency as the acoustic stimuli; the threshold for suppression of primary instability by acoustic forcing is determined exactly. Increasing the acoustic amplitude allows the flame to respond parametrically to the acoustics. This response is characterised by troughs and crests interchanging their roles while the mean flame speed again oscillates with the same frequency as the acoustic stimuli and at twice that of wrinkle amplitude oscillations.  相似文献   

15.
16.
超声场下刚性界面附近溃灭空化气泡的速度分析   总被引:3,自引:0,他引:3       下载免费PDF全文
郭策  祝锡晶  王建青  叶林征 《物理学报》2016,65(4):44304-044304
为了揭示刚性界面附近气泡空化参数与微射流的相互关系, 从两气泡控制方程出发, 利用镜像原理, 建立了考虑刚性壁面作用的空化泡动力学模型. 数值对比了刚性界面与自由界面下气泡的运动特性, 并分析了气泡初始半径、气泡到固壁面的距离、声压幅值和超声频率对气泡溃灭的影响. 在此基础上, 建立了气泡溃灭速度和微射流的相互关系. 结果表明: 刚性界面对气泡振动主要起到抑制作用; 气泡溃灭的剧烈程度随气泡初始半径和超声频率的增加而降低, 随着气泡到固壁面距离的增加而增加; 声压幅值存在最优值, 固壁面附近的气泡在该最优值下气泡溃灭最为剧烈; 通过研究气泡溃灭速度和微射流的关系发现, 调节气泡溃灭速度可以达到间接控制微射流的目的.  相似文献   

17.
The problem of a single acoustically driven bubble translating unsteadily in a fluid is considered. The investigation of the translation equation identifies the inverse Reynolds number as a small perturbation parameter. The objective is to obtain a closed-form, leading order solution for the translation of the bubble, assuming nonlinear radial oscillations and a pressure field as the forcing term. In a second part, the periodic attractor of the Rayleigh-Plesset equation serves as basis for an optimal acoustic forcing designed to achieve maximized bubble translation over one dimensionless period. At near-resonant or super-resonant driving frequencies, it seems one cannot improve much on sinusoidal forcing. However at moderate acoustic intensity and sub-resonant frequencies, acoustic wave forms that enhance bubble collapse lead to displacement many times larger than the case of purely sinusoidal forcing. The survey covers a wide spectrum of driving ratios and bubble diameters including those relevant to biomedical applications. Shape stability issues are considered. Together, these results suggest new ways to predict some of the direct and indirect effects of the acoustic radiation force in applications such as targeted drug delivery, selective bubble driving, and accumulation.  相似文献   

18.
An air flow in a pipe with two closed side-branches can induce high pressure pulsations in a pipe system. This phenomenon has been investigated and the results are reported in this paper. A simple theoretical model based on a wave transmission was used to determine a resonance condition associated with an acoustic coupling between branches. In the model a plane wave approximation and an impedance representation of a branch were applied. The experiment was carried out in a pipe system with a relatively large distance between branches compared to branch lengths. A frequency and a pressure of pulsations were measured in a wide range of length of downstream branch. A support for the theory is provided by a favorable comparison between experimental data and calculated resonant frequencies of the system.  相似文献   

19.
An analytical method for the solution of squeeze film damping based on Green's function to the nonlinear Reynolds equation considering an elastic plate is presented. This allows calculating the stiffness and damping forces rapidly for various boundary conditions. The elastic plate velocity is applied to the nonlinear Reynolds equation as a forcing term. The nonlinear Reynolds equation is divided into multiple linear nonhomogeneous Helmholtz equations, which then can be solvable using the presented approach. Approximate mode shapes of a rectangular elastic plate are used, enabling the calculation of the damping ratio and frequency shift for the linear case, as well as the complex resistant pressure, for both linear and nonlinear cases.  相似文献   

20.
张仕双  李彬彬  傅波 《应用声学》2021,40(1):113-130
对微藻细胞壁进行破碎是提高微藻油脂提取率的重要手段,超声振动破碎是一种有效的细胞破碎方法。建立基于声冲流、声辐射力、声空化的传质动力学的经验模型,运用传输矩阵法设计用于微藻细胞破碎的超声振动子,搭建了实验平台,并设置不同超声振动工艺参数对微藻细胞的破碎率进行了实验研究。结果表明:超声振动子,在工具头浸入微藻二分之一总溶液深度、工作时间30 min、功率225 W、纵振频率25 kHz的条件下,超声振动破碎的效果最佳,采用氯仿试剂对破碎液进行油脂提取,效果最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号