首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 905 毫秒
1.
Single crystals of the title compounds have been grown by the Czochralski technique. Pb4P2O9 crystallizes in the space group P21c with the parameters a = 9.4812 Å, b = 7.1303 Å, c = 14.390 Å, β = 104.51° and Pb8P2O13 in C2m with a = 10.641 Å, b = 10.206Å c = 14.342 Å, β = 98.34°.  相似文献   

2.
The structures of the low-and high-temperature modifications of lithium orthotantalate, Li3TaO4, have been determined by neutron and X-ray diffraction methods. The low-temperature, or β, phase has symmetry C2c and lattice parameters a1 = 8.500(3), b1 = 8.500(3), c1 = 9.344(3)Å, and β = 117.05(2)°. The high-temperature, or α, phase has symmetry P2 and lattice parameters ah = 6.018(1), bh = 5.995(1), ch = 12.865(2)Å, and βh = 103.53(2)°. Both structures are ordered. The β-phase has a rock salt-type structure with a 3 : 1 ordering of the Li+ and Ta5+ ions. Its structure can be generated from the low-temperature modification by means of a complex pattern of shifts of the Ta5+ ions.  相似文献   

3.
The crystal structures of (Ti1?xScx)2O3, x = 0.0038, 0.0109, and 0.0413, and of (Ti0.99Al0.01)2O3, have been determined from X-ray diffraction data collected from single crystals using an automated diffractometer, and have been refined to weighted residuals of 25–34. Cell constants have also been determined for x = 0.0005, 0.0019, and 0.0232. The compounds are rhombohedral, space group R3c, and are isomorphous with α-Al2O3. The hexagonal cell dimensions range from a = 5.1573(2)Å, c = 13.613(1)Å for (Ti0.9995Sc0.0005)2O3 to a = 5.1659(4)Å, c = 13.644(1)Å for (Ti0.9587Sc0.0413)2O3, and a = 5.1526(2)Å, c = 13.609(1)Å for (Ti0.99Al0.01)2O3. Sc and Al substitution cause similar increases in the short near-neighbor metal-metal distance across the shared octahedral face; for Sc doping the increase is from 2.578(1) Å in pure Ti2O3 to 2.597(1) Å in (Ti0.9587Sc0.0413)2O3. By contrast, changes in the metal-metal distance across the shared octahedral edge appear to be governed by ionic size effects. The distance increases from 2.994(1) Å in Ti2O3 to 3.000(1) Å in (Ti0.9587Sc0.0413)2O3 and decreases to 2.991(1) Å in (Ti0.99Al0.01)2O3.  相似文献   

4.
The new compound BaSb2S4 crystallizes in the monoclinic system (space group: P21c, No. 14) with a = 8.985(2) Å, b = 8.203(3) Å, c = 20.602(5) Å, β = 101.36(3)°. SbS3 ψ tetrahedra and ψ-trigonal SbS4 bipyramids are connected by common corners and edgers to infinite strings. These are arraged cross-wise in sheets perpendicular to the c axis.  相似文献   

5.
Fe2P2O7 crystallizes in the C1 space group with lattice parameters a = 6.649(2)Å, b = 8.484(2)Å, c = 4.488(1)Å, α = 90.04°, β = 103.89(3)°, γ = 92.82(3)°, and ?cal = 3.86 g/cc. It is essentially isostructural with β-Zn2P2O7. As in the Zn compound, the bridging oxygen atom in the P2O7 group shows a high anisotropic thermal motion. It appears that the P-O-P bond angle is linear as a result of extensive π bonding with the p orbitals on the bridging oxygen atom. The high thermal motion is vibration of the atom into cavities in the structure.  相似文献   

6.
Ce6Mo10O39 crystallizes in the triclinic system with unit-cell dimensions (from single-crystal data) a = 10.148(5), Å, b = 18.764(6), Å, c = 9.566(5), Å, α = 103.12(7)°, β = 78.07(7)°, γ = 107.69(7)°, and space group P1, z = 2. The structure was solved using direct methods with 3113 countermeasured reflections (Mo radiation), and refined using Fourier and least-squares techniques to a conventional R of 0.039 (ωR = 0.047). Ce6Mo10O39 has a structure that consists of isolated MoO4 tetrahedra together with one corner-shared pair of tetrahedra, linked to irregular eight-coordinate Ce(III) polyhedra. The average MoO distance of 1.77 Å, and average CeO distance of 2.52 Å are in good agreement with previously reported values.  相似文献   

7.
Single crystals of Pb2P2O7 have been grown by the Czochralski technique. They have the triclinic space group P1 with cell dimensions a = 6.9627 Å, b = 6.9754Å, c = 12.764 Å, α = 96.78°, β = 91.16°, γ = 89.68°. There are four molecules per unit cell. Dielectric properties for this compound have been measured and are discussed.  相似文献   

8.
The crystal structure of SnC2O4 has been determined by X-ray single-crystal techniques and refined to R = 0,018 for 1139 reflections. The cell is monoclinic, space group C2c with Z = 4 formula units, the parameters being a = 10,375(3)Å. b = 5,504(2)Å, c = 8,234(3)Å, β = 125,11(2)°. The oxalato groups, located on symmetry centers, are chelated to two Sn atoms through one oxygen on each carbon atom, giving rise to an infinite string (SnC2O4)n. The Sn(II) atom is one-side bonded to four oxygen atoms with two SnO bonds of 2,232(2) Å and two of 2,393(2) Å. The tin atom is in a distorted trigonal bipyramid SnO4E, the lone pair E occupying one of the apices of the equatorial trigonal base of the polyhedron. Crystal structure comparison with disodium bisoxalatostannate(II), Na2Sn(C2O4)2, permits one to deduce SnC2O4 by crystallographic shear operation 18[342](001) of c2 periodicity. Na2Sn(C2O4)2 can be described as an intergrowth of SnC2O4 and Na2C2O4 structures and consldered as the first member of a new series Na2Sn1+n(C2O4)2+n with n integer ? 0.  相似文献   

9.
Crystal structures for the fluorite-related phases CaHf4O9ф1) and Ca6Hf19O44 (ф2) have been determined from X-ray powder diffraction data. qf1 is monoclinic, C2c, with a = 17.698 Å, b = 14.500Å, c = 12.021 Å, β = 119.47° and Z = 16. qf2 is rhombohedral, R3c, with a = 12.058 Å, α = 98.31° and Z = 2.Both phases are superstructures derived from the defect fluorite structure by ordering of the cations and of the anion vacancies. The ordering is such that the calcium ions are always 8-coordinated by oxygen ions, while the hafnium ions may be 6-, 7-, or 8-coordinated. The closest approach of anion vacancies is a 12〈111〉 fluorite subcell vector, and in each structure vacancies with this separation form strings.  相似文献   

10.
The formula of a new compound isolated in the LaOsO system has been established by means of crystal structure determination. There are two La3Os2O10 units in a face-centered monoclinic unit cell (S.G. C2m); a = 7.911(2) Å, b = 7.963(2) Å, c = 6.966(2)Å, β = 115.76(2)°;. For 1082 intensities, collected on an automated single-crystal diffractometer, the final R value was 0.025 after absorption corrections. The structure consists of isolated Os2O10 clusters composed of two edge-shared OsO6 octahedra. These dimeric units are connected together by two types of La3+ ions in eightfold coordination. In view of the OsOs distance inside the pair (2.462 Å), La3Os2O10 provides an example of metal-metal bonding involving a transition metal in a half-integral formal oxidation state of 5.5.  相似文献   

11.
Single crystals of BaTiF5 and CaTiF5 were obtained by the Czochralski and Bridgman techniques, respectively. The crystal structures were determined by X-ray diffraction; BaTiF5: 14m, a = 15.091(5)Å, c = 7.670(3)Å; CaTiF5: I2c, a = 9.080(4)Å, b = 6.614Å, c = 7.696(3)Å, β = 115.16(3)°. Both structures are characterized by the presence of either branched or straight chains of TiF6 octahedra. BaTiF5 contains the unusual dimeric unit (Ti2F10)4?. Magnetic susceptibility measurements were performed on both compounds in the temperature range 4.2 to 300 K, however, no evidence for magnetic interactions between the Ti3+ moments were observed.  相似文献   

12.
NaBaCr2F9 and NaBaFe2F9 are monoclinic (SG P21n, No. 14). Lattice constants are found to be a = 7.318(2) Å, b = 17.311(4) Å, c = 5.398(1) Å, β = 91.14°(3) for chromium, and a = 7.363(2) Å, b = 17.527(4) Å, c = 5.484(1) Å, β = 91.50°(5) for iron. The structures were solved from 507 and 1113 X-ray reflections, respectively, for the Cr and Fe compounds; the corresponding Rw values are 0.025 and 0.037. The network is built from tilted double cis chains of octahedra (M2F9)3n?n [M = Cr, Fe], linked by Na+ and Ba2+ ions. The structures are compared to the previously described structures, particularly KPbCr2F9, whose symmetry and parameters are different. The difference is analyzed first in terms of tilted octahedra, but principally in terms of bond strengths and steric activity of the Pb2+ lone pair. A mechanism is proposed for the transformation between the structures of NaBaCr2F9 and KPbCr2F9.  相似文献   

13.
LLi2Mo4o13 crystallizes in the triclinic system with unit-cell dimensions a = 8.578 Å, b = 11.450 Å, c = 8.225 Å, α = 109.24°, β = 96.04°, γ = 95.95° and space group P1, Z = 3. The calculated and measured densities are 4.02 g/cm3 and 4.1 g/cm3 respectively. The structure was solved using three-dimensional Patterson and Fourier techniques. Of the 2468 unique reflections collected by counter methods, 1813 with I ? 3σ(I) were used in the least-squares refinement of the model to a conventional R of 0.031 (ωR = 0.038). LLi2Mo4O13 is a derivative of the V6O13 structure with oxygen ions arranged in a face-centred cubic type array with octahedrally coordinated molybdenum and lithium ions ordered into layers.  相似文献   

14.
K3Sb3P2O14 crystallizes in the rhombohedral system, space group R3m with a = 7.147(1) Å, c = 30.936(6) Å, Z = 3. The structure was determined from 701 reflections collected on a Nonius CAD4 automatic diffractometer with MoKα radiation. The final R index and the weighted Rw index are 0.033 and 0.042, respectively. The structure is built up from layers of SbO6 octahedra and PO4 tetrahedra sharing corners. The potassium ions are situated between the (Sb3P2O14)3? covalent layers.  相似文献   

15.
The 1-6 weberite Na2Te2O7 (Imm2, a = 7.233 Å, b = 10.104 Å, c = 7.454 Å) has been prepared by high-pressure synthesis. It is shown that a) (the mean unit-cell dimension per formula unit) of oxide weberites A2B2O7 can be represented as a linear function of the effective ionic radii of A and B. The problem of the true space-group symmetry of weberite is discussed.  相似文献   

16.
Sc2O2S is hexagonal, P63mmc, a = 3.5196(4) Å, c = 12.519(2) Å, Z = 2, Dc = 3.807 g cm?3, Dm = 4.014 g cm?3, μ(Mo) = 55.51 cm?1. The final R value is 0.038 for 205 symmetry-independent reflections. This scandium oxysulfide has c = 12.52 Å, twice the value found in rare earth oxysulfides. An La2O2S cell combined with its reflection in a (001) mirror gives the Sc2O2S cell.  相似文献   

17.
Anhydrous Li2SeO4 crystallizes in the trigonal space group R3 with a = 13.931(2), c = 9.304(3) Å, V = 1563.7 Å3, Z = 18, Dc = 2.988 g cm?3. The unit cell transforms to the rhombohedral coordinate system as a = 8.620 Å, α = 107.81(2)°, V = 521.2 Å3, Z = 6. The structure contains selenate anions bridged by Li in the phenacite structural type. Data collection was performed at low temperature for precise placement of the Li cations which are tetrahedrally surrounded by oxygen atoms. Some problems with secondary extinction were apparent and a correction was made. The structure refined to an R value of 0.034.  相似文献   

18.
Nickel-ammonium tetrametaphosphate, Ni(NH4)2P4O12 · 7H2O is triclinic with a = 13.841(3); b = 9.621(5); c = 7.482(2)Å; α = 98.05(4); β = 97.25(4); γ = 103.01(4)°; M = 536.59; V = 947.9Å3; Z = 2; Dx = 1.879 g cm?3; μ = 14.524 cm?1, and space group P1. The crystal structure was solved using 1661 independent reflections measured on a single-crystal diffractometer (Mo). The final R value is 0.056. The two crystallographic independent nickel atoms Ni(1) and Ni(2) are octahedrally coordinated: Ni(1) by four oxygen atoms and two water molecules, Ni(2) by six water molecules. Ni(1), closely connected to two P4O12 rings, forms a complex anion [Ni(P4O12)2(H2O)2]6? which is associated to ammonium polyhedra and [Ni(H2O)6]2+ octahedra. Another interesting feature of this atomic arrangement is the presence of a large channel (10 × 4) Å2 parallel to the c axis. The internal surface of this channel is covered by six zeolitic water molecules.  相似文献   

19.
Rb10Ta29.20O78 crystallizes in the hexagonal system with unit-cell dimensions (from single-crystal data) a = 7.503(4)Å, c = 36.348(4)Å, and space group P63mmc, z = 1. The structure was solved using three-dimensional Patterson and Fourier techniques. Of the 666 unique reflections measured by counter techniques, 515 with I ? 3σ(I) were used in the least-squares refinement of the model to a conventional R of 0.057 (Rω = 0.039). The structure of Rb10Ta29.20O78 consists of layers of corner-sharing groups of six edge-shared octahedra separated by layers of single octahedra and double hexagonal tungsten bronze-like layers, these layers being perpendicular to the hexagonal c-axis. Nine-coordinate tricapped trigonal prismatic sites between the hexagonal tungsten bronze-like layers are partially occupied by Ta(V) ions.  相似文献   

20.
The structure of hexagonal Cu5Ta11O30 (space group P62c) has been determined from single-crystal diffractometer data. The cell dimensions are a = 6.2297(2) Å and c = 32.550(2) Å, and the cell content is two formula units. The structure is related to those of CaTa4O11 and CeTa7O19 and contains alternately single and double layers of TaO7 pentagonal bipyramids sharing edges in the equatorial plane in the same way as UO7 in α-U3O8. The layers are connected by TaO6 octahedra and linear CuO2 groups, both formed by the apex oxygens of the TaO7 bipyramids. Refinement was made with the least-squares technique using 729 reflections, of which 422 were independent. The conventional R value was 3.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号