首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The finite element method is used to predict the dynamic behaviour of circular cylindrical shells in free vibrations. A suitable shape function for the circumferential displacement distribution has been proposed. This reduces the three-dimensional character of the problem to a two-dimensional one. The simultaneous iteration method to determine the eigen-frequencies and eigenvectors is utilised for solving the eigenvalue problem. The accuracy of the method has been checked by verifying the results of known cases. Finally an experimental shell structure containing elastic rings welded at the ends has also been analysed and the experimental results compared with the theoretical ones.  相似文献   

2.
The 2D equations in the Kirchhoff-Love theory are subjected to asymptotic analysis in the case of free interfacial vibrations of a longitudinally inhomogeneous infinite cylindrical shell. Three types of interfacial vibrations, associated with bending, super low-frequency semi-membrane, and extensional motions, are investigated. It is remarkable that for extensional modes natural frequencies have asymptotically small imaginary parts caused by a weak coupling with propagating bending waves. Bending and extensional vibrations correspond to Stonely-type plate waves, while semi-membrane ones are strongly dependent on shell curvature and do not allow flat plate interpretation. The paper represents generalization of the recent authors' publication [Kaplunov et al., J. Acoust. Soc. Am. 107, 1383-1393 (2000)] dealing with edge vibrations of a semi-infinite cylindrical shell.  相似文献   

3.
Only experimental studies are available on large-amplitude vibrations of clamped-free shells. In the present study, large-amplitude nonlinear vibrations of clamped-free circular cylindrical shell are numerically investigated for the first time. Shells with perfect and imperfect shape are studied. The Sanders-Koiter nonlinear shell theory is used to calculate the elastic strain energy. Shell displacement fields (longitudinal, circumferential and radial) are expanded by means of a double mixed series, i.e. harmonic functions for the circumferential variable and Chebyshev polynomials for the longitudinal variable. All boundary conditions are satisfied. The system is discretized by using natural modes of the shell and Lagrange equations by an energy approach, retaining damping through Rayleigh's dissipation function. Different expansions involving from 18 to 52 generalized coordinates are used to study the convergence of the solution. The nonlinear equations of motion are numerically studied by using arclength continuation method and bifurcation analysis. Numerical responses to harmonic radial excitation in the spectral neighborhood of the lowest natural frequency are compared with experimental results available in literature. The effect of geometric imperfections and excitation amplitude are numerically investigated and fully explained.  相似文献   

4.
The extended Galerkin method has been used in the investigation of axially loaded clamped-free homogeneous, isotropic and elastic cylindrical shells. Both mass and stiffnesses are considered to vary along the longitudinal direction. Legendre polynomials have been used as shape functions which lead to a simple and systematic procedure in determining the natural frequencies and mode shapes. Some numerical results are presented.  相似文献   

5.
The derivation of the general equations of motion for the analysis of laminated cylindrical shells consisting of layers of orthotropic laminae, and the equations of motion for rotationally symmetric deformation made previously by the authors are used in this study. The three coupled differential equations governing the rotationally symmetric motion of each layer of a cylindrical shell with rotary inertia neglected are replaced by another set of three differential equations where the solutions can be obtained systematically. General solutions for laminated cylindrical shells of finite length are presented. Coupled frequencies and several mode shapes for a fixed-end cylindrical shell with one and two orthotropic layers of various geometric dimensions are calculated for illustrative purposes. The results based on the present analysis for a single layered shell are compared to the results obtained according to the classical analysis.  相似文献   

6.
The influence of large heterogeneity on the axisymmetric vibration characteristics of thin, composite cylindrical shells is studied, both analytically and numerically. In the neighborhood of the axisymmetric breathing mode, frequency spectra for shells of infinite and finite length are shown to be influenced qualitatively as well as quantitatively by large deviations from material and geometric symmetry in layer arrangement. A study of mode coupling in a semi-infinite shell is made for both end modes and modes with stationary frequency with real finite wave number, the latter being uniquely generated by a special class of heterogeneity. In each case, analytical estimates are given for frequencies, wave numbers, and modal amplitudes as functions of material and geometric properties of the shell.  相似文献   

7.
Employing Biot's theory of wave propagation in liquid saturated porous media, axially symmetric vibrations of fluid-filled and empty poroelastic circular cylindrical shells of infinite extent are investigated for different wall-thicknesses. Let the poroelastic cylindrical shells are homogeneous and isotropic. The frequency equation of axially symmetric vibrations each for a pervious and an impervious surface is derived. Particular cases when the fluid is absent are considered both for pervious and impervious surfaces. The frequency equation of axially symmetric vibrations propagating in a fluid-filled and an empty poroelastic bore, each for a pervious and an impervious surface is derived as a limiting case when ratio of thickness to inner radius tends to infinity as the outer radius tends to infinity. Cut-off frequencies when the wavenumber is zero are obtained for fluid-filled and empty poroelastic cylindrical shells both for pervious and impervious surfaces. When the wavenumber is zero, the frequency equation of axially symmetric shear vibrations is independent of nature of surface, i.e., pervious or impervious and also it is independent of presence of fluid in the poroelastic cylindrical shell. Non-dimensional phase velocity for propagating modes is computed as a function of ratio of thickness to wavelength in absence of dissipation. These results are presented graphically for two types of poroelastic materials and then discussed. In general, the phase velocity of an empty poroelastic cylindrical shell is higher than that of a fluid-filled poroelastic cylindrical shell.The phase velocity of a fluid-filled bore is higher than that of an empty poroelastic bore. Previous results are shown as a special case of present investigation. Results of purely elastic solid are obtained.  相似文献   

8.
This paper concerns the free vibrations of cylindrical shells with elastic boundary conditions. Based on the Flügge classical thin shell theory, the equations of motion for the cylindrical shells are solved by the method of wave propagations. The wave numbers are obtained by directly solving an eighth order equation. The elastic-support boundary conditions can be arbitrarily specified in terms of 8 independent sets of distributed springs. All the classical homogeneous boundary conditions can be considered as the special cases when the stiffness for each set of springs is equal to either infinity or zero. The present solutions are validated by the results previously given by other researchers and/or obtained using finite element models. The effects on the frequency parameters of elastic restraints are investigated for shells of different geometrical characteristics.  相似文献   

9.
10.
The geometrically non-linear vibrations of linear elastic composite laminated shallow shells under the simultaneous action of thermal fields and mechanical excitations are analysed. For this purpose, a model based on a very efficient p-version first-order shear deformation finite element, with hierarchical basis functions, is employed. The equations of motion are solved in the time domain by a Newmark implicit time integration method. The model and code developed are partially validated by comparison with published data. Parametric studies are carried out in order to study the influence of temperature change, initial curvature, panel thickness and fibre orientation on the shells’ dynamics.  相似文献   

11.
Starting with Love type equations of motion for orthotropic circular cylindrical shells, the theory is simplified by assumptions similar to those in the Donnell-Mushtari-Vlasov development for isotropic shells. Closed form solutions for simply supported cases are then obtained. Results of two example cases are compared with finite element results and are shown to agree well. It is argued that this simplified approach allows easy assessment of the influence of design parameter changes.  相似文献   

12.
The free vibration analysis of a laminated composite cylindrical shell with an interior rectangular plate is performed by the analytical and experimental methods. The frequency equations of vibration of the shell including the plate are formulated by using the receptance method. To obtain the free vibration characteristics before the combination of two structures, the energy principle based on the classical plate theory and Love's thin shell theory is adopted. The numerical results are compared with the results from an experiment, as well as a finite element analysis, to validate the current formulation. The influences of the length-to-radius ratio (LS/a) and radius-to-thickness ratio (a/hS) of the shell and fiber orientation angles (Θ) of symmetric cross- and angle-ply composite materials on the natural frequencies of a cylindrical laminated combined shell are also discussed in details.  相似文献   

13.
Large-amplitude (geometrically non-linear) vibrations of circular cylindrical shells subjected to radial harmonic excitation in the spectral neighbourhood of the lowest resonances are investigated. The Lagrange equations of motion are obtained by an energy approach, retaining damping through Rayleigh's dissipation function. Four different non-linear thin shell theories, namely Donnell's, Sanders-Koiter, Flügge-Lur’e-Byrne and Novozhilov's theories, which neglect rotary inertia and shear deformation, are used to calculate the elastic strain energy. The formulation is also valid for orthotropic and symmetric cross-ply laminated composite shells. The large-amplitude response of perfect and imperfect, simply supported circular cylindrical shells to harmonic excitation in the spectral neighbourhood of the lowest natural frequency is computed for all these shell theories. Numerical responses obtained by using these four non-linear shell theories are also compared to results obtained by using the Donnell's non-linear shallow-shell equation of motion. A validation of calculations by comparison with experimental results is also performed. Both empty and fluid-filled shells are investigated by using a potential fluid model. The effects of radial pressure and axial load are also studied. Boundary conditions for simply supported shells are exactly satisfied. Different expansions involving from 14 to 48 generalized co-ordinates, associated with natural modes of simply supported shells, are used. The non-linear equations of motion are studied by using a code based on an arclength continuation method allowing bifurcation analysis.  相似文献   

14.
The large-amplitude response of perfect and imperfect, simply supported circular cylindrical shells to harmonic excitation in the spectral neighbourhood of some of the lowest natural frequencies is investigated. Donnell's non-linear shallow-shell theory is used and the solution is obtained by the Galerkin method. Several expansions involving 16 or more natural modes of the shell are used. The boundary conditions on the radial displacement and the continuity of circumferential displacement are exactly satisfied. The effect of internal quiescent, incompressible and inviscid fluid is investigated. The non-linear equations of motion are studied by using a code based on the arclength continuation method. A series of accurate experiments on forced vibrations of an empty and water-filled stainless-steel shell have been performed. Several modes have been intensively investigated for different vibration amplitudes. A closed loop control of the force excitation has been used. The actual geometry of the test shell has been measured and the geometric imperfections have been introduced in the theoretical model. Several interesting non-linear phenomena have been experimentally observed and numerically reproduced, such as softening-type non-linearity, different types of travelling wave response in the proximity of resonances, interaction among modes with different numbers of circumferential waves and amplitude-modulated response. For all the modes investigated, the theoretical and experimental results are in strong agreement.  相似文献   

15.
Large-amplitude (geometrically nonlinear) forced vibrations of circular cylindrical shells with different boundary conditions are investigated. The Sanders-Koiter nonlinear shell theory, which includes in-plane inertia, is used to calculate the elastic strain energy. The shell displacements (longitudinal, circumferential and radial) are expanded by means of a double mixed series: harmonic functions for the circumferential variable and three different formulations for the longitudinal variable; these three different formulations are: (a) Chebyshev orthogonal polynomials, (b) power polynomials, and (c) trigonometric functions. The same formulation is applied to study different boundary conditions; results are presented for simply supported and clamped shells. The analysis is performed in two steps: first a liner analysis is performed to identify natural modes, which are then used in the nonlinear analysis as generalized coordinates. The Lagrangian approach is applied to obtain a system of nonlinear ordinary differential equations. Different expansions involving from 14 to 34 generalized coordinates, associated with natural modes of both simply supported and clamped-clamped shells, are used to study the convergence of the solution. The nonlinear equations of motion are studied by using arclength continuation method and bifurcation analysis. Numerical responses obtained in the spectral neighborhood of the lowest natural frequency are compared with results available in literature.  相似文献   

16.
The vibrations of stiffened cylindrical shells having axisymmetric or asymmetric initial geometrical imperfections and axial preload are analyzed. The analysis is based on a solution of the von Kárman-Donnell non-linear shell equations, an “exact” solution of the compatibility equation, and a first order approximation by the Galerkin method of the equilibrium equation. The stiffeners are closely spaced and “smeared” stiffener theory is employed. The results of an extensive parametric study carried out on shells similar to those used in vibration and buckling tests at the Technion show that stiffening of the shell will lower the imperfection-sensitivity of its free vibrations, but the decrease depends on the type of stiffening (stringers or rings), the mode shapes of the vibration and the imperfection, the stiffener strength and eccentricity. The imperfection-sensitivity decrease, caused by the stiffeners, is greater for vibration mode shapes with high imperfection-sensitivity than for other vibration mode shapes. The sensitivity differences between stringer and ring-stiffened shells depend especially on the vibration and the imperfection mode shapes, and on their coupling. Small imperfections change the natural frequencies of stiffened shells in the same directions as for isotropic shells, but to a smaller extent. The frequency dependence on the external load is also strongly affected by the imperfection mode shape. The results correlate well with earlier ones for isotropic shells.  相似文献   

17.
The approach developed in the present paper is applied for the coupled-vibration analysis of a cantilever cylindrical shell partially submerged in a fluid with a continuous, simply connected and non-convex domain. The shell is partially and concentrically submerged in a rigid cylindrical container partially filled by a fluid which is assumed to be incompressible and inviscid. The velocity potential for fluid motion is formulated in terms of eigenfunction expansions using the collocation method. The interaction between the fluid and the structure takes into account by using the compatibility requirement along the wet surface of the shell and the Rayleigh-Ritz method is used to calculate natural frequencies and modes of the coupled system. The validity of the developed theoretical method is verified by comparing the results with those obtained from the finite element analysis. Furthermore, the effects of submergence depth, radial distance between shell and container, and circumferential wavenumbers on the natural frequencies and modes of the coupled system are investigated.  相似文献   

18.
In formulating mathematical models for dynamical systems, obtaining a high degree of qualitative correctness (i.e. predictive capability) may not be the only objective. The model must be useful for its intended application, and models of reduced complexity are attractive in many cases where time-consuming numerical procedures are required. This paper discusses the derivation of discrete low-dimensional models for the nonlinear vibration analysis of thin cylindrical shells. In order to understand the peculiarities inherent to this class of structural problems, the nonlinear vibrations and dynamic stability of a circular cylindrical shell subjected to static and dynamic loads are analyzed. This choice is based on the fact that cylindrical shells exhibit a highly nonlinear behavior under both static and dynamic loads. Geometric nonlinearities due to finite-amplitude shell motions are considered by using Donnell's nonlinear shallow-shell theory. A perturbation procedure, validated in previous studies, is used to derive a general expression for the nonlinear vibration modes and the discretized equations of motion are obtained by the Galerkin method using modal expansions for the displacements that satisfy all the relevant boundary and symmetry conditions. Next, the model is analyzed via the Karhunen-Loève expansion to investigate the relative importance of each mode obtained by the perturbation solution on the nonlinear response and total energy of the system. The responses of several low-dimensional models are compared. It is shown that rather low-dimensional but properly selected models can describe with good accuracy the response of the shell up to very large vibration amplitudes.  相似文献   

19.
A Timoshenko-beam-on-Pasternak-foundation model is developed for the analysis of thin elastic cylindrical shells. This model aims to bridge the gap between the Love-Kirchhoff theory and the approximate beam-on-elastic-foundation model of Vlasov (“long-wave” model), which accounts for only longitudinal stretching and circumferential bending. The new model improves on the assumptions of the “long-wave” model by accounting for the effects of two additional actions, namely, in-plane shearing and twist. The model is used to derive “explicit” design formulae for (1) the fundamental natural frequencies for vibration of a uniform cylindrical shell having six sets of end restraints, and (2) the circumferential modenumbers associated with the fundamental mode. A comprehensive comparative study of the predictions of both models against available results in the literature and results obtained by the finite-element method has shown that the proposed model significantly extends the limits of the validity of the “long-wave” model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号