首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let G(V,E) be a simple connected graph. A set SV is a power dominating set (PDS) of G, if every vertex and every edge in the system is observed following the observation rules of power system monitoring. The minimum cardinality of a PDS of a graph G is the power domination number γp(G). In this paper, we establish a fundamental result that would provide a lower bound for the power domination number of a graph. Further, we solve the power domination problem in polyphenylene dendrimers, Rhenium Trioxide (ReO3) lattices and silicate networks.  相似文献   

2.
Let G=(V,E) be a graph. A set S?V is a restrained dominating set if every vertex not in S is adjacent to a vertex in S and to a vertex in V?S. The restrained domination number of G, denoted by γr(G), is the smallest cardinality of a restrained dominating set of G. We define the restrained bondage number br(G) of a nonempty graph G to be the minimum cardinality among all sets of edges E?E for which γr(G?E)>γr(G). Sharp bounds are obtained for br(G), and exact values are determined for several classes of graphs. Also, we show that the decision problem for br(G) is NP-complete even for bipartite graphs.  相似文献   

3.
The inflation GI of a graph G is obtained from G by replacing every vertex x of degree d(x) by a clique X=Kd(x) and each edge xy by an edge between two vertices of the corresponding cliques X and Y of GI in such a way that the edges of GI which come from the edges of G form a matching of GI. A set S of vertices in a graph G is a total dominating set, abbreviated TDS, of G if every vertex of G is adjacent to a vertex in S. The minimum cardinality of a TDS of G is the total domination number γt(G) of G. In this paper, we investigate total domination in inflated graphs. We provide an upper bound on the total domination number of an inflated graph in terms of its order and matching number. We show that if G is a connected graph of order n2, then γt(GI)2n/3, and we characterize the graphs achieving equality in this bound. Further, if we restrict the minimum degree of G to be at least 2, then we show that γt(GI)n, with equality if and only if G has a perfect matching. If we increase the minimum degree requirement of G to be at least 3, then we show γt(GI)n, with equality if and only if every minimum TDS of GI is a perfect total dominating set of GI, where a perfect total dominating set is a TDS with the property that every vertex is adjacent to precisely one vertex of the set.  相似文献   

4.
Let G be a graph and let k and j be positive integers. A subset D of the vertex set of G is a k-dominating set if every vertex not in D has at least k neighbors in D. The k-domination number γk(G) is the cardinality of a smallest k-dominating set of G. A subset I?V(G) is a j-independent set of G if every vertex in I has at most j?1 neighbors in I. The j-independence number αj(G) is the cardinality of a largest j-independent set of G. In this work, we study the interaction between γk(G) and αj(G) in a graph G. Hereby, we generalize some known inequalities concerning these parameters and put into relation different known and new bounds on k-domination and j-independence. Finally, we will discuss several consequences that follow from the given relations, while always highlighting the symmetry that exists between these two graph invariants.  相似文献   

5.
6.
The vertex arboricity a(G) of a graph G is the minimum number of colors required to color the vertices of G such that no cycle is monochromatic. The list vertex arboricity al(G) is the list-coloring version of this concept. In this note, we prove that if G is a toroidal graph, then al(G)4; and al(G)=4 if and only if G contains K7 as an induced subgraph.  相似文献   

7.
Let G=(VE) be a simple graph and for every vertex vV let L(v) be a set (list) of available colors. G is called L-colorable if there is a proper coloring φ of the vertices with φ(v)L(v) for all vV. A function f:VN is called a choice function of G and G is said to be f-list colorable if G is L-colorable for every list assignment L choice function is defined by size(f)=vVf(v) and the sum choice number χsc(G) denotes the minimum size of a choice function of G.Sum list colorings were introduced by Isaak in 2002 and got a lot of attention since then.For r3 a generalized θk1k2kr-graph is a simple graph consisting of two vertices v1 and v2 connected by r internally vertex disjoint paths of lengths k1,k2,,kr (k1k2?kr).In 2014, Carraher et al. determined the sum-paintability of all generalized θ-graphs which is an online-version of the sum choice number and consequently an upper bound for it.In this paper we obtain sharp upper bounds for the sum choice number of all generalized θ-graphs with k12 and characterize all generalized θ-graphs G which attain the trivial upper bound |V(G)|+|E(G)|.  相似文献   

8.
Let γ(G) and γg(G) be the domination number and the game domination number of a graph G, respectively. In this paper γg-maximal graphs are introduced as the graphs G for which γg(G)=2γ(G)?1 holds. Large families of γg-maximal graphs are constructed among the graphs in which their sets of support vertices are minimum dominating sets. γg-maximal graphs are also characterized among the starlike trees, that is, trees which have exactly one vertex of degree at least 3.  相似文献   

9.
Let G be a graph with vertex set V. A moplex of G is both a clique and a module whose neighborhood is a minimal separator in G or empty. A moplex ordering of G is an ordered partition (X1,X2,?,Xk) of V for some integer k into moplexes which are defined in the successive transitory elimination graphs, i.e., for 1?i?k?1, Xi is a moplex of the graph Gi induced by j=ikXj and Xk induces a clique. In this paper we prove the terminal vertex by an execution of the lexicographical depth-first search (LexDFS for short) algorithm on G belongs to a moplex whose vertices are numbered consecutively and further that the LexDFS algorithm on G defines a moplex ordering of G, which is similar to the result about the maximum cardinality search (MCS for short) algorithm on chordal graphs [J.R.S. Blair, B.W. Peyton, An introduction to chordal graphs and clique trees, IMA Volumes in Mathematics and its Applications, 56 (1993) pp. 1–30] and the result about the lexicographical breadth-first search (LexBFS for short) algorithm on general graphs [A. Berry, J.-P. Bordat, Separability generalizes Dirac’s theorem, Discrete Appl. Math., 84 (1998) 43–53]. As a corollary, we can obtain a simple algorithm on a chordal graph to generate all minimal separators and all maximal cliques.  相似文献   

10.
Let P denote a path in a graph G=(V,E) with vertices. A vertex cover P set C in G is a vertex subset such that every P in G has at least a vertex in C. The Vertex CoverP problem is to find a vertex cover P set of minimum cardinality in a given graph. This problem is NP-hard for any integer 2. The parameterized version of Vertex CoverP problem called k-Vertex CoverP asks whether there exists a vertex cover P set of size at most k in the input graph. In this paper, we give two fixed parameter algorithms to solve the k-Vertex CoverP3 problem. The first algorithm runs in time O1(1.7964k) in polynomial space and the second algorithm runs in time O1(1.7485k) in exponential space. Both algorithms are faster than previous known fixed-parameter algorithms.  相似文献   

11.
Given a graph G, a defensive alliance of G is a set of vertices S?V(G) satisfying the condition that for each vS, at least half of the vertices in the closed neighborhood of v are in S. A defensive alliance S is called global if every vertex in V(G)?S is adjacent to at least one member of the defensive alliance S. The global defensive alliance number of G, denoted γa(G), is the minimum size around all the global defensive alliances of G. In this paper, we present an efficient algorithm to determine the global defensive alliance numbers of trees, and further give formulas to decide the global defensive alliance numbers of complete k-ary trees for k=2,3,4. We also establish upper bounds and lower bounds for γa(Pm×Pn),γa(Cm×Pn) and γa(Cm×Cn), and show that the bounds are sharp for certain m,n.  相似文献   

12.
13.
Let us denote the independence polynomial of a graph by IG(x). If IG(x)=IH(x) implies that G?H then we say G is independence unique. For graph G and H if IG(x)=IH(x) but G and H are not isomorphic, then we say G and H are independence equivalent. In [7], Brown and Hoshino gave a way to construct independent equivalent graphs for circulant graphs. In this work we give a way to construct the independence equivalent graphs for general simple graphs and obtain some properties of the independence polynomial of paths and cycles.  相似文献   

14.
15.
16.
A graph G is a (Kq,k) vertex stable graph if it contains a Kq after deleting any subset of k vertices. We give a characterization of (Kq,k) vertex stable graphs with minimum size for q=3,4,5.  相似文献   

17.
18.
19.
20.
We study a graph coloring game in which two players collectively color the vertices of a graph in the following way. In each round the first player (Ann) selects a vertex, and then the second player (Ben) colors it properly, using a fixed set of colors. The goal of Ann is to achieve a proper coloring of the whole graph, while Ben is trying to prevent realization of this project. The smallest number of colors necessary for Ann to win the game on a graph G (regardless of Ben’s strategy) is called the indicated chromatic number of G, and denoted by χi(G). We approach the question how much χi(G) differs from the usual chromatic number χ(G). In particular, whether there is a function f such that χi(G)?f(χ(G)) for every graph G. We prove that f cannot be linear with leading coefficient less than 4/3. On the other hand, we show that the indicated chromatic number of random graphs is bounded roughly by 4χ(G). We also exhibit several classes of graphs for which χi(G)=χ(G) and show that this equality for any class of perfect graphs implies Clique-Pair Conjecture for this class of graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号