首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, nonlinear equations of large amplitude vibration for a laminated plate in a general state of nonuniform initial stress are derived. The equations include the effects of transverse shear and rotary inertia. Using these derived governing equations, the large amplitude vibration behaviour of an initially stressed cross-ply laminated plate is studied. The initial stress is taken to be a combination of pure bending stress plus an extensional stress in the plane of the plate. The Galerkin method is used to reduce the governing nonlinear partial differential equations to ordinary nonlinear differential equations and the Runge-Kutta method is used to obtain the nonlinear to linear frequencies. The frequency responses of nonlinear vibration are sensitive of the vibration amplitude, aspect ratio, thickness ratio, modulus ratio, stack sequence, layer number and state of initial stresses. The effects of various parameters on the large amplitude free vibrations are presented.  相似文献   

2.
A previously developed analysis of the flexural vibration of isotropic rectangular plates is extended to include the presence of a membrane stress system. The method of analysis is the Rayleigh-Ritz method and Mindlin plate theory is used which takes into account effects which are disregarded in the classical plate theory. As in the aforementioned earlier analysis the spatial variations of the deflection and two rotations over the plate middle surface are based on the use of Timoshenko beam functions. The membrane stress system comprises biaxial direct stress plus in-plane shearing stress and is uniform throughout the plate. Numerical results are presented for a number of types of plate and of applied stress which show the manner of variation of the frequencies of vibration as the intensity of stress changes. This manner of variation is similar in form to that demonstrated elsewhere by analyses based on the use of the classical plate theory but the magnitudes of the present calculated frequencies are considerably reduced for moderately thick plates.  相似文献   

3.
本文分析了电策动下,由半径不同的压电陶瓷和金属构成的中厚度层合环板的振动问题.在考虑中厚度层合环板变形特征的基础上,得到了其动力学基本方程.利用半解析单元法,得到了中厚度层合环板在各种边界条件下的振型和固有频率.此外本文还讨论了环板的振动转化为紧贴其上的转子的连续转动的现象.  相似文献   

4.
Non-linear free vibrations of a simply supported rectangular elastic plate are examined, by using stress equations of free flexural motions of plates with moderately large amplitudes derived by Herrmann. A modal expansion is used for the normal displacement that satisfies the boundary conditions exactly, but the in-plane displacements are satisfied approximately by an averaging technique. Galerkin technique is used to reduce the problem to a system of coupled non-linear ordinary differential equations for the modal amplitudes. These nonlinear differential equations are solved for arbitrary initial conditions by using the multiple-time-scaling technique. Explicit values of the coefficients that appear in the forementioned Galerkin system of equations are given, in terms of non-dimensional parameters characterizing the plate geometry and material properties, for a four-mode case, for which results for specific initial conditions are presented. A comparison of the results with those obtained in previous studies of the problem is presented. In addition, effects of prescribed edge loadings are examined for the four-mode case.  相似文献   

5.
Thermal postbuckling and vibration behaviors of the functionally graded (FG) plate are investigated. The material properties of the FG plate are assumed to vary continuously through the thickness of the plate and as temperature with the nonlinearity. The nonlinear finite element equations based on the first-order shear deformation plate theory are formulated for the FG plate. The von Karman nonlinear strain–displacement relationship is used to account for the large deflection of the plate. The incremental form considering the initial displacement and initial stress is adopted for the nonlinear temperature-dependent material properties of the functionally graded material. The numerical result shows the characteristics of the thermal postbuckling and vibration of the FG plate in the pre- and post-buckled regions.  相似文献   

6.
In this paper an analytical investigation of large amplitude free flexural vibrations of isotropic and orthotropic moderately thick triangular plates is carried out. The governing equations are expressed in terms of the lateral displacement, w, and the stress function, F, and are based on an improved non-linear vibration theory which accounts for the effects of transverse shear deformation and rotatory inertia. Solutions to the governing equations are obtained by using a single-mode approximation for w, Galerkin's method and a numerical integration procedure. Numerical results are presented in terms of variations of non-linear frequency ratios with amplitudes of vibrations. The effects of transverse shear, rotatory inertia, material properties, aspect ratios, and thickness parameters are studied and compared with available solutions wherever possible. Present results are in close agreement with those reported for thin plates. It is believed that all of the results reported here that are applicable for moderately thick plates are new and therefore, no comparison is possible.  相似文献   

7.
An analysis of the free flexural vibrations of elastic circular plates with initial imperfections is presented. The analysis includes the effects of transverse shear and rotatory inertia. The vibration amplitudes are assumed to be large, and two non-linear differential equations are obtained for free vibration of the plate and solved numerically. The period of the plate has been calculated as a function of the initial amplitude for four typical supporting conditions.  相似文献   

8.
Free vibration analysis of annular moderately thick plates integrated with piezoelectric layers is investigated in this study for different combinations of soft simply supported, hard simply supported and clamped boundary conditions at the inner and outer edges of the annular plate on the basis of the Levinson plate theory (LPT). The distribution of electric potential along the thickness direction in the piezoelectric layer is assumed as a sinusoidal function so that the Maxwell static electricity equation is approximately satisfied. The differential equations of motion are solved analytically for various boundary conditions of the plate. In this study the closed-form solution for characteristic equations, displacement components of the plate and electric potential are derived for the first time in the literature. To demonstrate the accuracy of the present solution, comparison studies is first carried out with the available data in the literature and then natural frequencies of the piezoelectric coupled annular plate are presented for different thickness-radius ratios, inner-outer radius ratios, thickness of piezoelectric, material of piezoelectric and boundary conditions. Present analytical model provides design reference for piezoelectric material application, such as sensors, actuators and ultrasonic motors.  相似文献   

9.
基于Reissner-Mindlin板弯曲理论,将Kriging插值无网格法应用于中厚板弯曲问题,推导相应的离散方程.该方法可以只依赖于一组离散的节点建立试函数,有效地避免了复杂的网格划分和网格畸变的影响.相对于无网格法中常用的移动最小二乘近似而言,滑动Kriging插值法的形函数满足Kronecker delta函数性质,可以直接施加本质边界条件.算例分析表明,用Kriging插值无网格法分析中厚板弯曲问题,具有效率高,精度高和易于实现等优点.  相似文献   

10.
The vibratory response of a circular plate with a central trunnion is considered. A harmonic force is allowed to act on the trunnion in a plane parallel to the surface of the plate. The model allows for arbitrary location of the center of mass of the trunnion and the line of action of the exciting force. The plate equations include the effects of transverse shear deformations and rotatory inertia, which makes the analysis useful for either thick or thin plates at acoustic frequencies. Application of the model in the control of noise and vibration of rotating machinery is illustrated.  相似文献   

11.
The non-linear (i.e., large deflection) free vibrations of thick, orthotropic annular plates with varying thickness are calculated. The formulation is based on the more general Reissner plate equations as well as the von Kármán plate equations for variable thickness annular plates. Numerical results for the ratio of the non-linear period to the linear period of natural vibration are compared with those existing in the literature. New results are also included for future comparisons.  相似文献   

12.
A new variable kinematic Ritz method applied to free vibration analysis of arbitrary quadrilateral thin and thick isotropic plates is presented. Carrera's unified formulation and the versatile pb-2 Ritz method are properly combined to build a powerful yet simple modeling and solution framework. The proposed technique allows to generate arbitrarily accurate Ritz solutions from a large variety of refined two-dimensional plate theories by expanding so-called Ritz fundamental nuclei of the plate mass and stiffness matrices. Theoretical development of the present methodology is described in detail. Convergence and accuracy of the method are examined through several examples on thin, moderately thick, and very thick plates of rectangular, skew, trapezoidal and general quadrilateral shapes, with an arbitrary combination of clamped, free and simply supported edges. Present results are compared with existing three-dimensional solutions from open literature. Maximum and average differences of various higher-order plate theories and three-dimensional results are also presented with the aim of providing useful guidelines on the choice of appropriate plate theory to get a desired accuracy on frequency parameters.  相似文献   

13.
The free vibration analysis of functionally graded (FG) thick annular plates subjected to thermal environment is studied based on the 3D elasticity theory. The material properties are assumed to be temperature dependent and graded in the thickness direction. Considering the thermal environment effects and using Hamilton's principle, the equations of motion are derived. The effects of the initial thermal stresses are considered accurately by obtaining them from the 3D thermoelastic equilibrium equations. The differential quadrature method (DQM) as an efficient and accurate numerical tool is used to solve both the thermoelastic equilibrium and free vibration equations. Very fast rate of convergence of the method is demonstrated. Also, the formulation is validated by comparing the results with those obtained based on the first-order shear deformation theory and also with those available in the literature for the limit cases, i.e. annular plates without thermal effects. The effects of temperature rise, material and geometrical parameters on the natural frequencies are investigated. The new results can be used as benchmark solutions for future researches.  相似文献   

14.
The mean-square bending moment of a thick rectangular plate excited by a uniform distribution of stationary random forces that are uncorrelated in space is calculated. The plate has in-plane compressive or tensile stresses. In addition, the plate is mounted on an elastic foundation. Numerical results are given for plates with uniform initial stress when the temporal correlation function of the excitation possesses an exponential decay. In general it can be said that the position on the plate where the mean-square moment takes on a maximum value depends upon the relative values of the initial stress, the stiffness of the foundation and the aspect ratio of the plate. The mean-square response amplitude of the plate on a foundation never exceeds that of the plate without a foundation, regardless of the intensity of the initial stress or the geometrical configuration of the plate.  相似文献   

15.
This paper is a study of the steady state response of an orthotropic plate strip to a moving line load. The plate is of infinite length and subjected to initial in-plane stresses parallel and perpendicular to the edges. The solution is obtained on the basis of a thick plate theory which takes into account the effects of shear deformation and rotatory inertia. The critical speed of the load which brings about a resonance effect in the system is determined. Further, the bending moment in the plate is calculated for several values of the load speed and the initial stress parameters and shown graphically as a function of the space variable moving with the load.  相似文献   

16.
Based upon a piecewise linear displacement field which allows the contact conditions for the displacements and the transverse shearing stresses at the interfaces to be satisfied simultaneously, the non-linear (in the von Kármán sense) equations of motion for thick multilayered orthotropic plates are developed. Successively, the equations are specified to the linear boundary value problem of the bending and to the linear eigenvalue problems of the undamped vibration and buckling of rectangular plates. In order to assess the accuracy of the proposed theory, the sample problem of the bending, free undamped vibration and buckling of a three-layered, symmetric cross-ply, square plate simply supported on all edges is investigated. For purposes of comparison, numerical results from the exact elasticity theory, the classical lamination (Kirchhoff) theory and the shear deformation theory (Timoshenko and Mindlin) with three different values of the shear correction factor are also presented. It is found that the proposed approach is very efficient in predicting the global responses (deflection, natural frequencies and buckling loads) of thick multilayered plates and models effects, such as the distortion of the deformed normals, not attainable from the classical lamination theory, as well as the shear deformation theory.  相似文献   

17.
Free vibration of thick rectangular plates is investigated by using the “method of initial functions” proposed by Vlasov. The governing equations are derived from the three-dimensional elastodynamic equations. They are obtained in the form of series and theories of any desired order can be constructed by deleting higher terms in the infinite order differential equations. The numerical results are compared with those of classical, Mindlin, and Lee and Reismann solutions.  相似文献   

18.
The Quality factors (Q-factor) are defined as the ratio of the kinetic and potential energy to dissipation for various damping mechanisms of structures. Therefore, improvement in the Q-factors is an important issue in micro- and nano-resonator applications for the high performance. Also, it is well known that the thermoelastic damping is more crucial than the other damping factors in a device. Thus, the vibration of nano-mechanical circular tube is investigated with thermoelastic damping and initial stress effects in this work. To simplify the shell equations for the transverse displacement-dominated problems, the Donnell-Mushtari-Vlasov (DMV) approach is adopted. Applying the stress function, the equations of motion for deflection, compatibility equation and heat conduction equation are derived. Using an iterative scheme, the natural frequencies and the Q-factors under the initial stress are obtained, and the influences of the dimensions of the shell, the mode numbers and initial stress are discussed in detail.  相似文献   

19.
In this paper, the generalized thermoelasticity problem for an infinite fiber-reinforced transversely-isotropic thick plate subjected to initial stress is solved. The lower surface of the plate rests on a rigid foundation and temperature while the upper surface is thermally insulated with prescribed surface loading. The normal mode analysis is used to obtain the analytical expressions for the displacements, stresses and temperature distributions. The problem has been solved analytically using the generalized thermoelasticity theory of dual-phase-lags. Effect of phase-lags, reinforcement and initial stress on the field quantities is shown graphically. The results due to the coupled thermoelasticity theory, Lord and Shulman's theory, and Green and Naghdi's theory have been derived as limiting cases. The graphs illustrated that the initial stress, the reinforcement and phase-lags have great effects on the distributions of the field quantities.  相似文献   

20.
The proposed numerical analysis of moderately thick plates subject to rather general boundary conditions is based on the direct boundary element method (BEM) in the frequency domain. First order shear-deformation theory of the Reissner-Mindlin-type is considered. A step forward in efficiency is obtained when the force and double force with moment Green's functions of the rectangular simply supported base plate of the same stiffness are applied. The time-reduced equations of hard-hinged polygonal plates correspond to those of a background Kirchhoff plate having frequency-dependent effective parameters like mass, lateral and in-plane load, and is further forced by imposed fictitious curvatures. This analogy holds even for the quasi-static shear forces and bending moments, i.e., when inertia effects become negligible. Furthermore, it can be shown that, in the static case, these stress resultants for certain groups of Reissner-type shear-deformable plates are identical with those resulting from the Kirchhoff theory in the background. Since this analogy is restricted to hard-hinged supports of straight edges, it is necessary to apply, e.g., the direct BEM of analysis to the plate of general planform and boundary conditions. The main effort is thus to study the properties and effective representations of the Green's dyadics and their singularities, in view of their proper integration. Similarly as for Kirchhoff plates, the strong singularity of the infinite domain is identified for the rectangular plate and subject to indirect integration. The resulting direct BEM proves to be efficient, robust and, in connection with proper pre- and post-processors, becomes an effective tool of engineering analyses just within the frequency limits given by the first two of the three spectral branches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号