首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optimal design of beams in torsion under harmonically varying torques is discussed. The analysis covers the cases when the excitation frequency is either less than or greater than the fundamental frequency of the beam. The beams analyzed are in the main assumed to have rectangular cross-section but the theory is easily extended to other section shapes. In each case the problem is stated in variational form with the introduction of constraints through Lagrange multipliers. The mathematical analysis of the various problems presented results in a system of non-linear differential equations with associated boundary conditions. The solutions given for some of the cases provide expressions for the design variable and the response, along the length of the beam, in terms of the forcing frequency and some constants which can be determined for the particular problem. The computed results and data are given in tabular form and some optimum profiles are shown graphically.  相似文献   

2.
A method of extremum weight design of thin-walled I beams for a given natural frequency of torsional vibrations is presented. The effects of warping stresses and constant axial loads are taken into account. The optimality condition for only one (except for the web height) dimension of the cross-section, variable along the axis of the beam, is derived by using Pontryagin's maximum principle. The solution of the problem formulated, with account also taken of the additional geometrical conditions, is obtained in an iterative way. Some numerical examples of optimal design of an I beam with variable flange width, for a specified fundamental frequency, are given.  相似文献   

3.
An adjoint variational principle has been developed for a non-conservatively loaded cantilever beam with Kelvin-Voigt internal and linear external damping and is applied to a beam with a linearly distributed tangential load acting along the centerline of the beam. Relative mass optimization for beams of both rectangular and circular crosssections is considered from a graphical standpoint and from the viewpoint of a computer optimization routine with data given and discussed in both instances. In going to a Rosenbrock optimization routine for beams of rectangular cross-section with a minimum tip thickness constraint imposed it was quite clear that mass ratio reductions in the range 14·9 % to 38 % are possible and that the values of internal and external damping appear influential in determining just how much of a mass reduction is possible. Similarly, for beams of circular cross-section a Rosenbrock optimization routine with a minimum tip diameter constraint imposed showed that mass ratio reductions of the order of 27 % are possible.  相似文献   

4.
New frequency equations for transverse vibrations of Timoshenko beams carrying a concentrated mass at an arbitrary point along the beam are given. Normal mode equations for the hinged-hinged beam are given and the orthogonality condition is presented for beams with hinged, clamped or free ends. A numerical example is given and frequency charts show the effects of varying the size and location of the concentrated mass.  相似文献   

5.
In this paper, a comprehensive assessment of design parameters for various beam theories subjected to a moving mass is investigated under different boundary conditions. The design parameters are adopted as the maximum dynamic deflection and bending moment of the beam. To this end, discrete equations of motion for classical Euler-Bernoulli, Timoshenko and higher-order beams under a moving mass are derived based on Hamilton's principle. The reproducing kernel particle method (RKPM) and extended Newmark-β method are utilized for spatial and time discretization of the problem, correspondingly. The design parameter spectra in terms of the beam slenderness, mass weight and velocity of the moving mass are introduced for the mentioned beam theories as well as various boundary conditions. The results indicate the existence of a critical beam slenderness mostly as a function of beam boundary condition, in which, for slenderness lower than this so-called critical one, the application of Euler-Bernoulli or even Timoshenko beam theories would underestimate the real dynamic response of the system. Moreover, there would be a roughly linear relation between the weight of the moving mass and the design parameters for a certain value of the moving mass velocity in most cases of boundary conditions.  相似文献   

6.
The optimal design of thin-walled I beams so as to extremize the natural frequency of torsional vibration is considered. It is assumed that only one dimension of the cross-section, except for the web height, may be variable in given limits, along the axis of the beam. The optimality condition for the variable dimension is settled by means of Pontryagin's maximum principle. The effect of the constant, axial loads is also included. the solution of the problem formulated is generally found in an iterative way. Some numerical examples of optimization of the I beam with variable widt of flanges are given.  相似文献   

7.
Utilizing the Timoshenko beam theory and applying Hamilton's principle, the bending vibration equations of an axially loaded beam with locally distributed internal damping of the Kelvin-Voigt type are established. The partial differential equations of motion are then discretized into linear second-order ordinary differential equations based on a finite element method. A quadratic eigenvalue problem of a damped system is formed to determine the eigenfrequencies of the damped beams. The effects of the internal damping, sizes and locations of damped segment, axial load and restraint types on the damping and oscillating parts of the damped natural frequency are investigated. It is believed that the present study is valuable for better understanding the influence of various parameters of the damped beam on its vibration characteristics.  相似文献   

8.
This paper presents an analytical approach to the fundamental frequency of cracked Euler-Bernoulli beams in bending vibrations. The flexibility influence function method used to solve the problem leads to an eigenvalue problem formulated in integral form. The influence of the crack was represented by an elastic rotational spring connecting the two segments of the beam at the cracked section. In solving the problem, closed-form expressions for the approximated values of the fundamental frequency of cracked Euler-Bernoulli beams in bending vibrations are reached. The results obtained agree with those numerically obtained by the finite element method.  相似文献   

9.
张永康  鲍四元 《应用声学》2024,43(2):330-338
本文使用微分方程解析法求解变截面梁固有频率。首先,建立变截面梁模型,其中截面面积和惯性矩均按幂次函数变化。得到变截面梁自由振动时挠度的解析表达式,并获得不同边界条件下梁弯曲振动的固有频率方程。其中惯性矩所对应幂指数与截面面积的幂指数的差值为4时,可得自振频率方程的精确形式;而幂指数差值不等于4时,给出近似解法。其次,对4种具体的变截面梁求解不同边界下的自振频率,并与瑞利-里兹法所得的自振频率解比较。验证精确解法结果的正确性,并发现近似解法结果的相对偏差在5%以内。该解析方法较瑞利-里兹法具有能快速求解的特点,且易于分析截面参数对梁固有频率的影响。由算例可得,边界和其他参数不变时,梁的同阶次无量纲自振频率随着幂次指数的增加而增加。几何参数中仅截面形状参数改变时,随着形状参数的增加,梁的同阶次无量纲自振频率随之减小,但固定-自由梁的第一阶自振频率除外。  相似文献   

10.
The average spreading of a linear Gaussian–Schell model (GSM) beam array in non-Kolmogorov turbulence is studied, where the coherent combination is considered. The effects of the beam number, the separation distance between two adjacent beams and the generalized exponent on the root-mean-square (rms) beam width are investigated. The results indicate that the rms beam width in non-Kolmogorov turbulence is different from that in Kolmogorov turbulence, and there is an optimum beam number that leads to a minimum beam width. Further, the beam width can reach the minimum value by adopting the optimum separation distance, which decreases with the increase of beam number. Besides, the partially coherent beam array is less sensitive to the atmospheric turbulence than the fully coherent one.  相似文献   

11.
When beams are connected at an arbitrary angle and subjected to an external excitation, both longitudinal and bending waves are generated in the system. Since longitudinal wavelengths are considerably longer than bending wavelengths in the mid-frequency region, the number of bending wavelengths in the beams is considerably larger than the number of longitudinal wavelengths. In this paper, plannar beams connected at arbitrary angles are considered. The energy finite element analysis (EFEA) is employed for modelling the bending behavior of the beams and the conventional finite element analysis (FEA) is utilized for modelling the longitudinal vibration in the beams. Thus, a basic hybrid FEA formulation is presented for mid-frequency analysis of systems that contain two types of energy. The bending vibration is associated with the long members in the system and the longitudinal vibration is associated with the short members. The long members are considered to have high modal overlap and to contain several wavelengths within their dimension, and uncertainty effects are present. The short members contain a small number of wavelengths, and exhibit a low modal overlap. Due to the low modal overlap the resonant frequencies are spaced far apart in the frequency domain, therefore the short members exhibit resonant or non-resonant behavior depending on the frequency of the excitation.In this work, the bending and the longitudinal vibration within the same beam member are treated as a long and as a short member, respectively. A hybrid joint formulation is developed between long and short members. Power reflection and transmission coefficients are derived for each joint. The distribution of the energy throughout the system demonstrates a strong dependency on the power transfer coefficients. Several systems are analyzed by the hybrid FEA and by analytical solutions, and good correlation between them is observed.  相似文献   

12.
The semi-analytical approach to the non-linear dynamic response of beams based on multimode analysis has been presented in Part I of this series of papers (Azrar et al., 1999 Journal of Sound and Vibration224, 183-207 [1]). The mathematical formulation of the problem and single mode analysis have been studied. The objective of this paper is to take advantage of applying this semi-analytical approach to the large amplitude forced vibrations of beams. Various types of excitation forces such as harmonic distributed and concentrated loads are considered. The governing equation of motion is obtained and can be considered as a multi-dimensional form of the Duffing equation. Using the harmonic balance method, the equation of motion is converted into non-linear algebraic form. Techniques of solution based on iterative-incremental procedures are presented. The non-linear frequency and the non-linear modes are determined at large amplitudes of vibration. The basic function contribution coefficients to the displacement response for various beam boundary conditions are calculated. The percentage of participation for each mode in the response is presented in order to appraise the relation to higher modes contributing to the solution. Also, the percentage contributions of the higher modes to the bending moment near to the clamps are given, in order to determine accurately the error introduced in the non-linear bending stress estimated by different approximations. Solutions obtained in the jump phenomena region have been determined by a careful selection of the initial iteration at each frequency. The non-linear deflection shapes in various regions of the solution, the corresponding axial force ratios and the bending moments are presented in order to follow the behaviour of the beam at large vibration amplitudes. The numerical results obtained here for the non-linear forced response are compared with those from the linear theory, with available non-linear results, based on various approaches, and with the single mode analysis.  相似文献   

13.
In general, the exact solutions for natural frequencies and mode shapes of non-uniform beams are obtainable only for a few types such as wedge beams. However, the exact solution for the natural frequencies and mode shapes of an immersed wedge beam is not obtained yet. This is because, due to the “added mass” of water, the mass density of the immersed part of the beam is different from its emerged part. The objective of this paper is to present some information for this problem. First, the displacement functions for the immersed part and emerged part of the wedge beam are derived. Next, the force (and moment) equilibrium conditions and the deflection compatibility conditions for the two parts are imposed to establish a set of simultaneous equations with eight integration constants as the unknowns. Equating to zero the coefficient determinant one obtains the frequency equation, and solving the last equation one obtains the natural frequencies of the immersed wedge beam. From the last natural frequencies and the above-mentioned simultaneous equations, one may determine all the eight integration constants and, in turn, the corresponding mode shapes. All the analytical solutions are compared with the numerical ones obtained from the finite element method and good agreement is achieved. The formulation of this paper is available for the fully or partially immersed doubly tapered beams with square, rectangular or circular cross-sections. The taper ratio for width and that for depth may also be equal or unequal.  相似文献   

14.
It is proved by model measurements that, for sandwich beams constructed from two rectangular tubes and a damping layer glued between them, the following calculation methods can be applied. Static bending and shear stresses as well as deflections of simply supported beams may be calculated by Allen's formulae for sandwich beams with flexurally stiff faces. The first eigenfrequency and the loss factor can be determined by using the diagrams given in reference [1]. For the loss factors Ungar's formula gives a suitable approximation. A minimum cost design procedure is presented for a sandwich beam with constant cross-section. The unknown dimensions of the cross-section are determined which satisfy the design constraints and minimize the material costs. In a numerical example, constraints relating to the maximal dynamic stresses and deflection as well as local buckling of plate elements are considered. In the optimization the backtrack combinatorial discrete programming method is applied. A numerical comparison shows that the material costs of a sandwich beam are lower than those of a homogeneous box one.  相似文献   

15.
In this paper, the free vibration of a non-uniform free–free Euler–Bernoulli beam is studied using an inverse problem approach. It is found that the fourth-order governing differential equation for such beams possess a fundamental closed-form solution for certain polynomial variations of the mass and stiffness. An infinite number of non-uniform free–free beams exist, with different mass and stiffness variations, but sharing the same fundamental frequency. A detailed study is conducted for linear, quadratic and cubic variations of mass, and on how to pre-select the internal nodes such that the closed-form solutions exist for the three cases. A special case is also considered where, at the internal nodes, external elastic constraints are present. The derived results are provided as benchmark solutions for the validation of non-uniform free–free beam numerical codes.  相似文献   

16.
The effect of electrostatic force on the dynamic response of a Bernoulli-Euler piezoelectric nanobeam is analyzed in this paper.The governing equations with the electrostatic stress are derived based on a variational principle.Static bending problem of simply supported and cantilever beam is considered.The influence of the electrostatic force on the first four natural frequencies is discussed.It is shown that when the beam thickness is small,the effect of the electrostatic force is significant.When the beam thickness is large,the electrostatic force is insignificant and can be neglected.The results also indicate that one can adjust the natural frequency of a nanobeam by applying appropriate voltage.  相似文献   

17.
We consider acoustic wave beams propagating in a smoothly inhomogeneous medium along a given reference ray. It is shown that in the aberration-free approximation, a Gaussian beam diverges with distance (on the average) less than any other beam with the same initial width. This result has been obtained by solving a variational problem that is similar to the well-known quantum-mechanical problem of seeking the quantum state with minimum uncertainty (coherent state). An example of the beam with minimum divergence in the realistic model of a deep-ocean acoustic waveguide is considered. An approximate analytical estimate for the amplitudes of normal modes forming the beam is obtained. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 52, No. 1, pp. 46–54, January 2009.  相似文献   

18.
This paper investigates the vibration isolation performance of floating floor and floating box structures to control rail vibration transmission. Simple theoretical and experimental methods are developed to analyze the effects of stiffener beam, mass and arrangement of isolator on the fundamental natural frequency of the flexural vibration of floating floor and box structure.The vibration reduction performances of floating floor and box structure are found to be degraded by flexural vibration of the floor or supporting stiffener beam. From the results of vibration measurements; stiffener beams increase the fundamental natural frequency of flexural vibration of floating floor and enhance vibration isolation. Also they can further alleviate the effect of flexural vibration using optimum isolator arrangement effectively. The proposed floating box design achieved a vibration reduction of 15-30 dB in frequency region of critical rail vibration (30-200 Hz).  相似文献   

19.
This paper examines the natural frequencies and modes of transverse vibration of two simple redundant systems comprising straight uniform Euler-Bernoulli beams in which there are internal self-balancing axial loads (e.g., loads due to non-uniform thermal strains). The simplest system consists of two parallel beams joined at their ends and the other is a 6-beam rectangular plane frame. Symmetric mode vibration normal to the plane of the frame is studied. Transcendental frequency equations are established for the different systems. Computed frequencies and modes are presented which show the effect of (1) varying the axial loads over a wide range, up to and beyond the values which cause individual members to buckle (2) pinning or fixing the beam joints (3) varying the relative flexural stiffness of the component beams. When the internal axial loads first cause any one of the component beams to buckle, the fundamental frequency of the whole system vanishes. The critical axial loads required for this are determined. A simple criterion has been identified to predict whether a small increase from zero in the axial compressive load in any one member causes the natural frequencies of the whole system to rise or fall. It is shown that this depends on the relative flexural stiffnesses and buckling loads of the different members. Computed modes of vibration show that when the axial modes reach their critical values, the buckled beam(s) distort with large amplitudes while the unbuckled beam(s) move either as rigid bodies or with bending which decays rapidly from the ends to a near-rigid-body movement over the central part of the beam. The modes of the systems with fixed joints change very little (if at all) with changing axial load, except when the load is close to the value which maximizes or minimizes the frequency. In a narrow range around this load the mode changes rapidly. The results provide an explanation for some computed results (as yet unpublished) for the flexural modes and frequencies of flat plates with non-uniform thermal stress distributions.  相似文献   

20.
A comprehensive dynamic model of a rotating hub–functionally graded material (FGM) beam system is developed based on a rigid–flexible coupled dynamics theory to study its free vibration characteristics. The rigid–flexible coupled dynamic equations of the system are derived using the method of assumed modes and Lagrange's equations of the second kind. The dynamic stiffening effect of the rotating hub–FGM beam system is captured by a second-order coupling term that represents longitudinal shrinking of the beam caused by the transverse displacement. The natural frequencies and mode shapes of the system with the chordwise bending and stretching (B–S) coupling effect are calculated and compared with those with the coupling effect neglected. When the B–S coupling effect is included, interesting frequency veering and mode shift phenomena are observed. A two-mode model is introduced to accurately predict the most obvious frequency veering behavior between two adjacent modes associated with a chordwise bending and a stretching mode. The critical veering angular velocities of the FGM beam that are analytically determined from the two-mode model are in excellent agreement with those from the comprehensive dynamic model. The effects of material inhomogeneity and graded properties of FGM beams on their dynamic characteristics are investigated. The comprehensive dynamic model developed here can be used in graded material design of FGM beams for achieving specified dynamic characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号