首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
王向东  张宝文  曹怡 《化学学报》1991,49(6):600-604
本文利用四正丁基四氟硼酸铵为探针, 研究了顺式芪和四环烷的9,10-二氰基蒽敏化光异构化的反应机理, 加入四正丁基四氟硼酸铵明显加快顺式芪的异构反应而减慢四环烷的反应。荧光猝灭及激光闪光光解实验证明四正丁基四氟硼酸铵能促进电荷分离过程而生成离子自由基对。从而证实顺式芪的异构化反应是经由离子自由基的历程, 而四环烷则是通过激基复合物机理。  相似文献   

2.
The magnetic field effect (MFE) on the photoinduced electron transfer (PET) reaction between the [Cu(phen)2]2+ complex and DNA has been studied in homogeneous buffer medium and in reverse micelles. The copper complex on photoexcitation can oxidize DNA in a deoxygenated environment. A prominent MFE is found even in a homogeneous aqueous medium for the triplet born radicals. The process of partial intercalation of [Cu(phen)2]2+ complex within DNA is responsible for such a rare observation. In reverse micelles, the MFE is not very much prominent because of the large separation distance between the component radicals of the geminate radical ion pairs generated through PET.  相似文献   

3.
Unlike the simple phenazine (PZ) molecule, one of its derivatives, dibenzo[a,c]phenazine (DBPZ) forms a charge-transfer complex in the triplet state (3ECT) with different amines, e.g., N,N-dimethylaniline (DMA), 4,4'-bis(dimethylamino)diphenylmethane (DMDPM), and triethylamine (TEA). Formation of the 3ECT and radical ion pairs (RIPs) due to electron transfer is identified by laser flash photolysis. The RIPs are much more abundant in the cases of DMA and DMDPM rather than in TEA. Interestingly, a prominent magnetic field effect (MFE) is observed in both the cases of 3ECT and RIPs in homogeneous acetonitrile-water (MeCN/H2O) mixtures. This rare observation of the 3ECT and MFE in non-viscous medium could be explained by considering the extended planar structure of DBPZ and inter-radical hydrogen bonding, mediated by the intervening water molecules. The magnetic field behavior is consistent with the hyperfine mechanism; however, the low B1/2 value for DBPZ-TEA system is ascribed to fast electron exchange due to the close proximity of the corresponding radical ions.  相似文献   

4.
《Chemical physics》1987,114(1):95-101
Chemically induced dynamic nuclear polarization in low magnetic field (low-field CIDNP) has been detected and studied in photoinduced electron transfer reactions in the polar solvent acetonitrile. For the radical-ion reactions two different approaches to interpret the low-field CIDNP are demonstrated: interpretation of the low-field CIDNP sign on the basis of quality relationships, and numerical calculations of the CIDNP field dependence. Analysis shows that low-field CIDNP in these reactions is sensitive to the value of the electron exchange interactions in radical-ion pairs.  相似文献   

5.
A water-soluble octacarboxyhemicarcerand was used as a shuttle to transport redox-active substrates across the aqueous medium and deliver them to the target protein. The results show that weak multivalent interactions and conformational flexibility can be exploited to reversibly bind complex supramolecular assemblies to biological molecules. Hydrophobic electron donors and acceptors were encapsulated within the hemicarcerand, and photoinduced electron transfer (ET) between the Zn-substituted cytochrome c (MW = 12.3 kD) and the host-guest complexes (MW = 2.2 kD) was used to probe the association between the negatively charged hemicarceplex and the positively charged protein. The behavior of the resulting ternary protein-hemicarcerand-guest assembly was investigated in two binding limits: (1) when K(encaps) ? K(assoc), the hemicarcerand transports the ligand to the protein while protecting it from the aqueous medium; and (2) when K(assoc) > K(encaps), the hemicarcerand-protein complex is formed first, and the hemicarcerand acts as an artificial receptor site that intercepts ligands from solution and positions them close to the active site of the metalloenzyme. In both cases, ET mediated by the protein-bound hemicarcerand is much faster than that due to diffusional encounters with the respective free donor or acceptor in solution. The measured ET rates suggest that the dominant binding region of the host-guest complex on the surface of the protein is consistent with the docking area of the native redox partner of cytochrome c. The strong association with the protein is attributed to the flexible conformation and adaptable charge distribution of the hemicarcerand, which allow for surface-matching with the cytochrome.  相似文献   

6.
Magnetic field effect (MFE) on the photoinduced electron transfer (PET) between phenazine (PZ) and the amines, N,N-dimethylaniline , N,N-diethylaniline, 4,4'-bis(dimethylamino)diphenylmethane (DMDPM), and triethylamine, has been studied in micelles, reverse micelles, and small unilamellar vesicles (SUVs) with a view to understand the effect of spatial location of the donor and acceptor moieties on the magnetic field behavior. The structure of the assembly is found to influence greatly the PET dynamics and hence the MFE of all the systems studied. The magnetic field behavior in micelles is consistent with the hyperfine mechanism, but high B(1/2) values have been obtained which have been ascribed to hopping and lifetime broadening. The variation of MFE with W(0), in reverse micelles, proves yet again that the MFE maximizes at an optimum separation distance between the acceptor and donor. This is the first example of such behavior for intermolecular PET in heterogeneous medium. We have also reported for the first time MFE on intermolecular PET in SUVs. In this case, the PZ-DMDPM system responds most appreciably to an external field compared to the other acceptor-donor systems because it is appropriately positioned in the bilayer. The differential behavior of the amines has been discussed in terms of their confinement in different zones of the organized assemblies depending on their bulk, hydrophobic, and electrostatic effects.  相似文献   

7.
白建伟  张宝文  曹怡 《化学学报》1995,53(5):495-500
本工作设计并合成了一系列以不同链长相连的芘-对二氰基乙烯基苯(Py-DCVB)化合物, 利用紫外可见吸收光谱、荧光光谱、核磁共振谱研究了Py-DCVB的光诱导分子内电子转移激基复合物的形成与基态构象的关系, 并且利用激光闪光光解开展了盐效应的研究, 瞬态吸收光谱的结果证实了Py-DCVB分子内光诱导电子转移反应经历激基复合物的中间过程。  相似文献   

8.
9.
Two types of energy-level broadening, one caused by electron exchange between radicals and ground-state molecules, the other by selective sampling at short times, are investigated. Both lead, in accordance with the uncertainty principle, to an increase in the B1/2 value.  相似文献   

10.
《Tetrahedron letters》1986,27(27):3123-3126
Metal salts and oxygen react synergistically to inhibit back-electron-transfer in photoinduced reactions.  相似文献   

11.
The photoinduced electron transfer from excited singlet and triplet states of hypocrellins to three electron acceptors, namely, methyl viologen chloride (MV), tetrachloro-p-benzoquinone (TCQ) and 2,3-dichloro-5,6-dicyan-p-benzoquinone (DDQ), has been investigated by fluorescence and time-resolved transient absorption spectra. In acetonitrile solution, DDQ and TCQ quenched the fluorescence and T-T absorption of hypocrellins (HA and HB) efficiently, while neither fluorescence nor T-T absorption of them could be quenched by MV. The quenching resulted from the electron transfer between excited hypocrellins and the electron acceptors was controlled by diffusion. The rate constants of electron transfer from excited singlet and triplet of HA to DDQ are 9.20×1010 dm3 mol?1 s?1 and 1.28×109 dm3 mol?1 s?1, respectively. The transient absorption spectra of the formed radical cations of hypocrellins are reported.  相似文献   

12.
We have used ab initio methods to confirm the existence of an inversion in the photoinduced intramolecular electron transfer in large conjugated pyridinium betaines, by examining compounds where an imidazole ring and a pyridinic group are connected by polyenic chains of increasing size. As these intermediary conjugated bridges get longer, an unusual net charge transfer is observed. The conjugated chain becomes a channel for the photoinduced electronic density flow, and the amount of charge at the donor and acceptor groups is reduced, while an inversion in the spatial localization of the frontier orbitals occurs. We discuss the corresponding implications on the nonlinear optical, photochemical and solvatochromic properties of these molecules.  相似文献   

13.
 Ab initio calculations have been performed to investigate the state transition in photoinduced electron transfer reactions between tetracyanoethylene and biphenyl as well as naphthalene. Face-to-face conformations of electron donor–acceptor (EDA) complexes were selected for this purpose. The geometries of the EDA complexes were determined by using the isolated optimized geometries of the donor and the acceptor to search for the maximum stabilization energy along the center-to-center distance. The correction of interaction energies for basis set superposition error was considered by using counterpoise methods. The ground and excited states of the EDA complexes were optimized with complete-active-space self-consistent-field calculations. The theoretical study of the ground state and excited states of the EDA complex in this work reveals that the S1 and S2 states of the EDA complexes are charge–transfer (CT) excited states, and CT absorption which corresponds to the S0→S1 and S0→S2 transitions arise from π−π* excitation. On the basis of an Onsager model, CT absorption in dichloromethane was investigated by considering the solvent reorganization energy. Detailed discussions on the excited state and on the CT absorptions were made. Received: 30 April 2001 / Accepted: 18 October 2001 / Published online: 9 January 2002  相似文献   

14.
李象远  周春  李泽荣 《化学学报》2000,58(2):189-193
以两态模型为基础,用从头算方法,在DZP[所有原子带极化函数的Dunning(9s,5p)/(3s,2p)]基组水平上对四氰基乙烯与四甲基乙烯间的电子转移进行理论计算。通过孤立给体和受体的几何构型优化,计算了给体的电离能和受体的电子亲和能。计算表明,在光诱导电荷分离之后的返回电子转移处于高放热的Marcus反转区。通过碰撞配合物的结构优化和电荷分离处理,在线性反应坐标近似下得到四甲基乙烯-四氰基乙烯配合物电荷分离反应的双势阱,进而获得反应热,键重组能,以及跃迁能。  相似文献   

15.
Photoinduced electron transfer (ET) processes were studied by the time-resolved Maxwell displacement charge (TRMDC) method in bilayer structures consisting of an electron donor-acceptor and conductive polymer monolayers, porphyrin-fullerene dyad and polyhexylthiophene, respectively, both layers prepared by the Langmuir-Blodgett (LB) method. The charge separation involves two fast steps: an intramolecular ET in the dyad molecule followed by an interlayer ET from the polymer to the formed porphyrin radical cation. These fast vertical intra- and interlayer processes could not be time-resolved by the TRMDC method. The lifetime of the charge separated state in the system was extended to hundreds of milliseconds by lateral electron and hole transfers in fullerene and polymer sublayers. The kinetics of the system was described by a model involving two long-living energetically different complete charge separated states. The data analysis indicates that the charge separation has a recombination time of 0.5 s. This is a promising result for possible applications.  相似文献   

16.
The photoinduced electron transfer in differently linked zinc porphyrin-fullerene dyads and their free-base porphyrin analogues was studied in polar and nonpolar solvents with femto- to nanosecond absorption and emission spectroscopies. A new intermediate state, different from the locally excited (LE) chromophores and the complete charge-separated (CCS) state, was observed. It was identified as an exciplex. The exciplex preceded the CCS state in polar benzonitrile and the excited singlet state of fullerene in nonpolar toluene. The behavior of the dyads was modeled by using a common kinetic scheme involving equilibria between the exciplex and LE chromophores. The scheme is suitable for all the studied porphyrin-fullerene compounds. The rates of reaction steps depended on the type of linkage between the moieties. The scheme and Marcus theory were applied to calculate electronic couplings for sequential reactions, and consistent results were obtained.  相似文献   

17.
The ultrafast electron transfer occurring upon Soret excitation of three new porphyrin-ferrocene (XP-Fc) dyads has been studied by femtosecond up-conversion and pump-probe techniques. In the XP-Fc dyads (XP-Fcs) designed in this study, the ferrocene moiety is covalently bonded to the meso positions of 3,5-di-tert-butylphenyl zinc porphyrin (BPZnP-Fc), pentafluorophenyl zinc porphyrin (FPZnP-Fc), and 3,5-di-tert-butylphenyl free-base porphyrin (BPH2P-Fc). Charge separation and recombination in the XP-Fcs were confirmed by transient absorption spectra, and the lifetimes of the charge-separated states were estimated from the decay rate of the porphyrin radical anion band to be approximately 20 ps. The charge-separation rates of the XP-Fcs were found to be >10(13) s-1 from the S2 state and 6.3x10(12) s-1 from the S1 state. Charge separation from the S2 state was particularly efficient for BPZnP-Fc, whereas the main reaction pathway was from the S1 state for BPH2P-Fc. Charge separation from the S2 and S1 states occurred at virtually the same rate in benzene and tetrahydrofuran and was much faster than their solvation times. Analysis of these results using semiquantum Marcus theory indicates that the magnitude of the electronic-tunneling matrix element is rather large and far outside the range of nonadiabatic approximation. The pump-probe data show the presence of vibrational coherence during the reactions, suggesting that wavepacket dynamics on the adiabatic potential energy surface might regulate the ultrafast reactions.  相似文献   

18.
The two major UV-induced DNA lesions, the cyclobutane pyrimidine dimers (CPD) and (6-4) pyrimidine-pyrimidone photoproducts, can be repaired by the light-activated enzymes CPD and (6-4) photolyases, respectively. It is a long-standing question how the two classes of photolyases with alike molecular structure are capable of reversing the two chemically different DNA photoproducts. In both photolyases the repair reaction is initiated by photoinduced electron transfer from the hydroquinone-anion part of the flavin adenine dinucleotide (FADH(-)) cofactor to the photoproduct. Here, the state-of-the-art XMCQDPT2-CASSCF approach was employed to compute the excitation spectra of the respective active site models. It is found that protonation of His365 in the presence of the hydroquinone-anion electron donor causes spontaneous, as opposed to photoinduced, coupled proton and electron transfer to the (6-4) photoproduct. The resulting neutralized biradical, containing the neutral semiquinone and the N3'-protonated (6-4) photoproduct neutral radical, corresponds to the lowest energy electronic ground-state minimum. The high electron affinity of the N3'-protonated (6-4) photoproduct underlines this finding. Thus, it is anticipated that the (6-4) photoproduct repair is assisted by His365 in its neutral form, which is in contrast to the repair mechanisms proposed in the literature. The repair via hydroxyl group transfer assisted by neutral His365 is considered. The repair involves the 5'base radical anion of the (6-4) photoproduct which in terms of electronic structure is similar to the CPD radical anion. A unified model of the CPD and (6-4) photoproduct repair is proposed.  相似文献   

19.
20.
Ohkubo K  Fukuzumi S 《Organic letters》2000,2(23):3647-3650
The 100% selective oxygenation of p-xylene to p-tolualdehyde is initiated by photoinduced electron transfer from p-xylene to the singlet excited state of 10-methyl-9-phenylacridinium ion under visible light irradiation, yielding p-tolualdehyde exclusively as the final oxygenated product. The reason for the high selectivity in the photocatalytic oxygenation of p-xylene is discussed on the basis of the photoinduced electron transfer mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号