首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freestanding multilayer films prepared by layer‐by‐layer technique have attracted interest as promising materials for wound dressings. The goal is to fabricate freestanding films using chitosan (CHI) and alginate (ALG) including subsequent crosslinking to improve the mechanical properties of films while maintaining their biocompatibility. Three crosslinking strategies are investigated, namely use of calcium ions for crosslinking ALG, 1‐ethyl‐3‐(‐3‐dimethylaminopropyl) carbodiimide combined with N‐hydroxysuccinimide for crosslinking ALG with CHI, and Genipin for crosslinking chitosan inside the films. Different characteristics, such as surface morphology, wettability, swelling, roughness, and mechanical properties are investigated showing that films became thinner, exhibited rougher surfaces, had lower water uptake, and increased mechanical strength after crosslinking. Changes of wettability are moderate and dependent on the crosslinking method. In vitro cytotoxicity and cell attachment studies with human dermal fibroblasts show that freestanding CHI‐ALG films represent a poorly adhesive substratum for fibroblasts, while studies using incubation of plastic‐adherent fibroblast beneath floating films show no signs of cytotoxicity in a time frame of 7 days. Results from cell experiments combined with film characteristics after crosslinking, indicate that crosslinked freestanding films made of ALG and CHI may be interesting candidates for wound dressings.  相似文献   

2.
The formation of novel biocompatible multilayer films based on the alternate deposition of CHI and ALG was investigated for the first time by QCM‐D and FTIR‐ATR. A linear increase of the thickness was found during the film build‐up. GLUT was used to crosslink the films terminated with either CHI or ALG. A change in the QCM‐D signal was observed just in the first case, indicating that crosslinking only takes place in the top CHI layer. The evolution of the dissipation factor during crosslinking was modelled with a first‐order kinetics; this reaction was found to be faster for chitosan terminated films with a lower number of multilayers. It was also found that more robust films could be produced by crosslinking the intermediate CHI layers during the build‐up.

  相似文献   


3.
Fe-immobilized polyelectrolyte microshells have been successfully constructed by alternative adsorption of Fe(III) and alginate sodium (ALG) onto the precursor shells composed of chitosan (CHI) and ALG templated on melamine formaldehyde (MF) particles. Confocal laser scanning microscopy (CLSM) directly demonstrated that the as-synthesized (ALG/CHI)4(ALG/Fe)n (n = 1, 2) shells could accumulate efficiently rhodamine B (RhB), methylene blue (MB) and acridine orange (AO) in well-defined internal space under moderate conditions via a simple mix processing. Further, H2O2 could cross the Fe-immobilized shell walls and react with the dyes concentrated in the interior of shells under visible radiation. The photodegradation of dyes accumulated in the microshells in the presence of H2O2 was characterized by UV–vis adsorption spectra and CLSM. More importantly, the photooxidative reaction occurring in the Fe-immobilized microshells can be performed at a wide range of pH from acid to neutral media, which is superior to the conventional Fenton reaction that allows taking effect only under acid condition of pH <4. Electron paramagnetic resonance (EPR) and other studies into the mechanism of the light-activated reaction process give tentative evidence that distinct from the photoreaction occurring in neutral medium, the photoreaction taking place in confined microshells in acid medium proceeds mainly through HO radicals with high oxidative potential.  相似文献   

4.
The dynamic adsorption of human serum albumin (HSA) and plasma fibronectin (Fn) onto hydrophobic poly(hydroxymethylsiloxane) (PHMS) and the structures of adsorbed protein layers from single and binary protein solutions were studied. Spectroscopic ellipsometry (SE) and quartz crystal microbalance with dissipation monitoring (QCM-D) together with atomic force microscopy (AFM) were used to measure the effective mass, thickness, viscoelastic properties, and morphology of the adsorbed protein films. Adsorbed HSA formed a rigid, tightly bound monolayer of deformed protein, and Fn adsorption yielded a thick, very viscoelastic layer that was firmly bound to the substrate. The mixed protein layers obtained from the coadsorption of binary equimolecular HSA-Fn solutions were found to be almost exclusively dominated by Fn molecules. Further sequential adsorption experiments showed little evidence of HSA adsorbed onto the predeposited Fn layer (denoted as Fn ? HSA), and Fn was not adsorbed onto predeposited HSA (HSA ? Fn). The conformational arrangement of the adsorbed Fn was analyzed in terms of the relative availability of two Fn domains. In particular, (4)F(1)·(5)F(1) binding domains in the Hep I fragment, close to the amino terminal of Fn, were targeted using a polyclonal antifibronectin antibody (anti-Fn), and the RGD sequence in the 10th segment, in the central region of the molecule, was tested by cell culture experiments. The results suggested that coadsorption with HSA induced the Fn switch from an open conformation, with the amino terminal subunit oriented toward the solution, to a close conformation, with the Fn central region oriented toward the solution.  相似文献   

5.
In the present study, blood-compatible PET surfaces were prepared by coating with anticoagulant cellulose sulfates that were synthesized homogeneously in ionic liquids. The adsorption behavior of polysaccharides on PET films was investigated using QCM-D. It was demonstrated that pre-coating with different amino-group-containing polysaccharides improves the affinity toward cellulose sulfate. Moreover, the effect of different degrees of sulfation on the adsorption process was evaluated. Based on these results, several layer-by-layer coated PET foils were prepared that showed significantly improved blood compatibility compared to the initial untreated material.  相似文献   

6.
Heparin (HEP) and periodate‐oxidized heparin (O‐HEP) nanotubes were prepared by combining the template method with a layer‐by‐layer (LbL) technique. The tubular structure was obtained and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and confocal laser scanning microscopy (CLSM). O‐HEP is one of the HEP derivatives that contains anticoagulant activity and preserves its ability for other effects. Chitosan (CHI) and O‐HEP have been used to fabricate nanotubes by covalent cross‐linking Schiff base reactions. It is demonstrated that the obtained nanotubes have the significant feature of autofluorescence without the addition of any fluorescent dyes and they retain their anticoagulation activity. Compared with O‐HEP/CHI nanotubes, HEP/CHI nanotubes show high anticoagulation activity and do not have autofluorescence. Furthermore, this method could be extended to other copolysaccharide derivatives for the preparation of autofluorescent nanomaterials.  相似文献   

7.
Structure of Protein Layers during Competitive Adsorption   总被引:1,自引:0,他引:1  
The formation of protein layers during competitive adsorption was studied with ellipsometry. Single, binary, and ternary protein solutions of human serum albumin (HSA), IgG, and fibrinogen (Fgn) were investigated at concentrations corresponding to blood plasma diluted 1/100. As a model surface, hydrophobic hexamethyldisiloxane (HMDSO) plasma polymer modified silica was used. By using multiambient media measurements of the bare substrate prior to protein adsorption the adsorbed amount as well as the thickness and refractive index of the adsorbed protein layer could be followedin situand in real time. Under conditions used in these experiments neither IgG nor fibrinogen could fully displace serum albumin from the interface. The buildup of the protein layer occurred via different mechanisms for the different protein systems. Fgn adsorbed in a rather flat orientation at low adsorbed amounts, while at higher surface coverage the protein reoriented to a more upright orientation in order to accommodate more molecules in the adsorbed layer. IgG adsorption proceeded mainly end-on with little reorientation or conformational change on adsorption. Finally, for HSA an adsorbed layer thickness greater than the molecular dimensions was observed at high concentrations (although not at low), indicating that aggregates or multilayers formed on HMDSO plasma polymer surfaces. For all protein mixtures the adsorbed layer structure and buildup indicated that Fgn was the protein dominating the adsorbed layer, although HSA partially blocked the adsorption of this protein. At high surface concentration, HSA/Fgn mixtures show an abrupt change in both adsorbed layer thickness and refractive index suggesting, e.g., an interfacial phase transition of the mixed protein layer. A similar but less pronounced behavior was observed for HSA/IgG. For IgG/Fgn and HSA/IgG/Fgn a buildup of the adsorbed layer similar to that displayed by Fgn alone was observed.  相似文献   

8.
The adsorption behavior of bottle-brush polymers with different charge/PEO ratio on silica was studied using optical reflectometry and QCM-D. The results obtained under different solution conditions clearly demonstrate the existence of two distinct adsorption mechanisms depending on the ratio of charge/PEO. In the case of low-charge density brush polymers (0-10 mol %), the adsorption occurs predominantly through the PEO side chains. However, the presence of a small amount of charge along the backbone (as low as 2 mol %) increases the adsorption significantly above that of the uncharged bottle-brush polymer in pure water. As the charge density of the brush polymers is increased to 25 mol % or larger the adsorption occurs predominantly through electrostatic interactions. The adsorbed layer structure was studied by measuring the layer dissipation using QCM-D. The adsorbed layer formed by the uncharged brush polymer dissipates only a small amount of energy that indicates that the brush lie along the surface, the scenario in which the maximum number of PEO side chains interact with the surface. The adsorbed layers formed by the low-charge density brush polymers (2-10 mol %) in water are more extended, which results in large energy dissipation, whereas those formed by the high-charge density brush polymers (50-100 mol %) have their backbone relatively flat on the surface and the energy dissipation is again low.  相似文献   

9.
The adsorption of fibronectin on gold, Ti-, and Ta-oxide surfaces is investigated by means of the quartz crystal microbalance with dissipation (QCM-D) technique. The surface chemistry (gold, Ti-, and Ta-oxide) is found to influence the frequency shift observed during adsorption of the fibronectin layer with the magnitude being Delta f Au>Delta f Ti-oxide approximately Delta f Ta-oxide. Corresponding variations in the dissipation change normalised to frequency change (Delta D/Delta f) for the layer are observed. The QCM-D data are further analyzed by the random sequential adsorption (RSA) model, and adsorption rate parameter ka and footprint (a) determined, which supported the trend seen in the Delta f and Delta D/Delta f values. The value of ka found by the RSA modelling of the QCM-D resonance frequency data is found to match the ratio between the mass measured by QCM-D and the mass reported by optical techniques in literature. We conclude that comparison of the adsorption rate parameter (ka) obtained by RSA modelling of the QCM-D data with ka values obtained from RSA modelling of data obtained using optical techniques can be a route to determine the degree of hydration of the adsorbed protein layer.  相似文献   

10.
Proteinaceous conditioning films (pCFs) are thought to play a key role in microbial adhesion, leading to the fouling of technical and biomedical devices and biofilm formation, which in turn causes material damage or persistent infections, respectively. However, little is definitively known about the process of surface conditioning via proteins. Herein, we demonstrate the potential of quartz crystal microbalance with dissipation coupled to MALDI-ToF mass spectrometry (QCM-D-MALDI) to investigate protein adsorption on different surfaces, enabling both the monitoring of CF formation and the determination of the molecular composition of CFs. After running QCM-D experiments, a subsequent tryptic on chip digestion step allows the identification of the proteins deposited on the sensor chip surface via MALDI-ToF mass spectrometry. Prominent blood plasma proteins, i.e., human serum albumin (HSA), fibrinogen (FG) and fibronectin (FN), were used. Chemically well defined sensor surfaces were prepared, among others, via self-assembled monolayer (SAM) technology. In cases where protein adsorption was observed by QCM-D, the adsorbed proteins were clearly detected and identified using MALDI-ToF/MS for both single-protein solutions of HSA, FG and FN as well as for protein mixtures. However, for equimolar protein mixtures on TiO2 surfaces, only signals attributed to FG and FN were observed in the mass spectra. No signals indicating the presence of HSA could be detected. This finding leads to the assumption that only FG and FN attach to the TiO2 sensor surface under the given experimental conditions.  相似文献   

11.
The adsorption of bovine serum albumin (BSA) on platinum surfaces with a root-mean-square roughness ranging from 1.49nm to 4.62nm was investigated using quartz crystal microbalance with dissipation (QCM-D). Two different BSA concentrations, 50microg/ml and 1mg/ml, were used, and the adsorption studies were complemented by monitoring the antibody interaction with the adsorbed BSA layer. The adsorption process was significantly influenced by the surface nano-roughness, and it was observed that the surface mass density of the adsorbed BSA layer is enhanced in a non-trivial way with the surface roughness. From a close examination of the energy dissipation vs. frequency shift plot obtained by the QCM-D technique, it was additionally observed that the BSA adsorption on the roughest surface is subject to several distinct adsorption phases revealing the presence of structural changes facilitated by the nano-rough surface morphology during the adsorption process. These changes were in particular noticeable for the adsorption at the low (50microg/ml) BSA concentration. The results confirm that the nano-rough surface morphology has a significant influence on both the BSA mass uptake and the functionality of the resulting protein layer.  相似文献   

12.
A quartz crystal microbalance with dissipation (QCM-D) has been used to determine the adsorption rate of ampicillin-resistant linear and supercoiled plasmid DNA onto a silica surface coated with natural organic matter (NOM). The structure of the resulting adsorbed DNA layer was determined by analyzing the viscoelastic properties of the adsorbed DNA layers as they formed and were then exposed to solutions of different ionic composition. The QCM-D data were complemented by dynamic light scattering measurements of diffusion coefficients of the DNA molecules as a function of solution ionic composition. The obtained results suggest that electrostatic interactions control the adsorption and structural changes of the adsorbed plasmid DNA on the NOM-coated silica surface. The adsorption of DNA molecules to the NOM layer took place at moderately high monovalent (sodium) electrolyte concentrations. A sharp decrease in solution ionic strength did not result in the release of the adsorbed DNA, indicating that DNA adsorption on the NOM-coated silica surface is irreversible under the studied solution conditions. However, the decrease in electrolyte concentration influenced the structure of the adsorbed layer, causing the adsorbed DNA to adopt a less compact conformation. The linear and supercoiled DNA had similar adsorption rates, but the linear DNA formed a thicker and less compact adsorbed layer than the supercoiled DNA.  相似文献   

13.
The adsorption of proteins at material surfaces is important in applications such as biomaterials, drug delivery, and diagnostics. The interaction of cells with artificial surfaces is mediated through adsorbed proteins, where the type of protein, amount, orientation, and conformation are of consequence for the cell response. Laminin, an important cell adhesive protein that is central in developmental biology, is studied by a combination of quartz crystal microbalance with dissipation (QCM-D) and surface plasmon resonance (SPR) to characterize the adsorption of laminin on surfaces of different surface chemistries. The combination of these two techniques allows for the determination of the thickness and effective density of the protein layer as well as the adsorbed mass and viscoelastic properties. We also evaluate the capacity of QCM-D to be used as a quantitative technique on a nanostructured surface, where protein is adsorbed specifically in a nanopattern exploiting PLL-g-PEG as a protein-resistant background. We show that laminin forms a highly hydrated protein layer with different characteristics depending on the underlying substrate. Using a combination of QCM-D and atomic force microscopy (AFM) data from nanostructured surfaces, we model laminin and antibody binding to nanometer-scale patches. A higher amount of laminin was found to adsorb in a thicker layer of a lower effective density in nanopatches compared to equivalent homogeneous surfaces. These results suggest that modeling of QCM-D data of soft viscoelastic layers arranged in nanopatterns may be applied where an independent measure of the "dry" mass is known.  相似文献   

14.
A novel route to facilitate the degradation of dye pollutants, a class of well-known recalcitrant organic pollutants, is reported. This new approach is based on a natural polyelectrolyte microshell that was preformed by the alternate adsorption of the anionic alginate sodium (ALG) and the cationic chitosan (CHI) onto weakly cross-linked melamine formaldehyde (MF) colloidal particles, and the subsequent sacrifice of MF templates in 0.1 M HCl. The as-prepared microshells could accumulate rhodamine B (RhB) and fluorescein (Flu) efficiently in water under ordinary conditions by means of a simple mixing process. The photodegradation of the accumulated RhB and Flu was examined in the presence of Fe3+ and H2O2 under visible radiation. The accumulated RhB and Flu are rapidly degraded and the assembled shells maintain their intact spherical shape throughout the photoreaction process. Results of recycling degradation experiments and the photochemical behavior of the shells, as demonstrated by confocal laser scanning microscopy (CLSM), UV-visible spectroscopy, and scanning force microscopy (SFM), further suggest that the constructed shells may be used as environmentally friendly microcontainers for the elimination of dyes in wastewater.  相似文献   

15.
A quartz crystal microbalance with dissipation (QCM-D) was used to measure the adsorption from aqueous solutions of CTAB (cationic) and C(12)E(6) (nonionic) surfactants on gold and silica surfaces. QCM-D allows for the determination of adsorption isotherms and also the monitoring of the dynamics of adsorption in real time. By considering the atomic-scale roughness of the solid surfaces and the surface area per head group at the air/water interface, our experiments indicate that at bulk concentrations above the critical micelle concentration adsorbed C(12)E(6) forms a monolayer-like structure on both surfaces and CTAB yields a bilayer-like structure. Although our measurements do not allow us to discriminate between the morphology of the aggregates (i.e., between flat monolayers, hemicylinders, or hemispheres in the case of C(12)E(6) and between flat bilayers, cylinders, or spheres in the case of CTAB), these results are particularly significant when compared to recent QCM-D data reported by Macakova et al. (Macakova, L.; Blomberg, E.; Claesson, P. M. Langmuir 2007, 23, 12436). These authors reported that QCM-D overestimates the amount of CTAB adsorbed on silica by as much as 30-40% as a result of entrapped water. Our analysis suggests that the effect of entrapped solvent is not as important as previously assumed and, in fact, QCM-D may not overestimate the amount of CTAB adsorbed when roughness is considered. Results for the kinetics of adsorption suggest that the aggregate structure as well as whether micelles are present may influence the adsorption mechanism. We discuss our results in the perspective of molecular theories for both the equilibrium and kinetics of surfactant adsorption.  相似文献   

16.
The surface properties and biocompatibility of a class of thermoplastic polyurethanes (TPUs) with applications in blood-contacting medical devices have been studied. Thin films of commercial TPUs and novel polyisobutylene (PIB)-poly(tetramethylene oxide) (PTMO) TPUs were characterized by contact angle measurements, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM) imaging. PIB-PTMO TPU surfaces have significantly higher C/N ratios and lower amounts of oxygen than the theoretical bulk composition, which is attributed to surface enrichment of PIB. Greater differences in the C/N ratios were observed with the softer compositions due to their higher relative amounts of PIB. The contact angles were higher on PIB-PTMO TPUs than on commercial polyether TPUs, indicating lower surface energy. AFM imaging showed phase separation and increasing domain sizes with increasing hard segment content. The biocompatibility was investigated by quantifying the adsorption of fouling and passivating proteins, fibrinogen (Fg) and human serum albumin (HSA) respectively, onto thin TPU films spin coated onto the electrode of a quartz crystal microbalance with dissipation monitoring (QCM-D). Competitive adsorption experiments were performed with a mixture of Fg and albumin in physiological ratio followed by binding of GPIIb-IIIa, the platelet receptor ligand that selectively binds to Fg. The QCM-D results indicate similar adsorbed amounts of both Fg and HSA on PIB-PTMO TPUs and commercial TPUs. The strength of the protein interactions with the various TPU surfaces measured with AFM (colloidal probe) was similar among the various TPUs. These results suggest excellent biocompatibility of these novel PIB-PTMO TPUs, similar to that of polyether TPUs.  相似文献   

17.
Multilayered thin films consisting of alternating cationic polyelectrolyte, poly(allylamine hydrochloride) (PAH), and anionic cellulose nanocrystals (CNs) were constructed using the dipping procedure by screening different experimental parameters: the drying step between each layer adsorption, the dipping time, the ionic strength of the PAH solution, and the concentration of CNs dispersion. We showed that the drying process and the ionic strength of PAH solution were crucial parameters for the successful construction of 8-bilayer films. Film thickness is mainly influenced by dipping time and CN concentration when using the dipping procedure without drying. Two architectures of adsorbed CN layers-a single or a double layer of CNs-were revealed on the basis of the thickness increment per bilayer, depending on experimental conditions. The layer adsorption process was investigated in real-time using quartz crystal microbalance with dissipation (QCM-D) experiments in an aqueous environment or by incorporating a drying step. On the basis of in situ construction of PAH-CN films in wet media, QCM-D data were indicative of highly hydrated films for which the progressive layer stacking is disturbed or prevented. QCM-D monitoring of CNs and PAH layer adsorption was monitored by incorporating a drying process. The impact of experimental parameters on PAH-CN multilayered construction and on CN layer configuration is discussed. This study offers new opportunities for tailoring the architecture of CN-based multilayer films.  相似文献   

18.
The hemocompatibility of polymeric vascular implants is in part dependent on the propensity of fibrinogen to adsorb to the implant surface. Fibrinogen surface adsorption was measured in real time using a quartz crystal microbalance with dissipation monitoring (QCM-D). Six new, biodegradable tyrosine-derived polycarbonates were used as test surfaces. Stainless steel, poly(L-lactic acid), poly(D,L-lactide-co-glycolide), and poly(ethylene terephthalate) surfaces served as controls and provided a comparison of the test surfaces with those of commonly used biomaterials. Our study addressed the question regarding to which extent systematic variations in polymer structure can be used to optimize X-ray visibility and provide tunable degradation rates while generating protein-repellant surface properties that minimize fibrinogen adsorption. QCM-D revealed surface-dependent changes in fibrinogen layer thickness (2 to 37 nm), adsorbed wet mass (0.2 to 4.3 microg/cm2), and viscosity (0.001 to 0.005 kg/ms). While we did not find an overall correlation between surface air-water contact angle measurements and fibrinogen adsorption (R2 = 0.08), our data demonstrate that gradually increasing the poly(ethylene glycol) content within a subgroup of polymers having the same polymer backbone will lead to decreased fibrinogen adsorption. Within this subgroup of polymers, there was a strong correlation between decreasing air-water contact angles and decreasing fibrinogen adsorption (R2 = 0.95). We conclude that it is possible to minimize fibrinogen adsorption to tyrosine-derived polycarbonates while optimizing X-ray visibility and degradation rates. Some of the tyrosine-derived polycarbonates were identified as useful materials for the design of blood-contacting implants on the basis of their substantially lower levels of fibrinogen adsorption relative to the commonly used controls.  相似文献   

19.
Core‐shell microparticles with functional multilayer shell walls consisting layers of naphthalene‐labeled polyanion ANp10 and polyviologen (PV) were fabricated through layer‐by‐layer (LbL) self‐assembly. Fluorescence emission from the naphthyl group in the ANp10 layer was found to be quenched by the viologen group in the PV layer regardless in inner or outer layer. This quenching was attributed to electron transfer from the excited naphthyl donor to the viologen acceptor. The quenching efficiency was simply tuned by changing numbers of the ALG/CHI bilayer spacer and PV layer. The resulting core‐shell microparticles will be served as a novel light‐harvesting antenna system.

  相似文献   


20.
Reactive Green HE 4BD was immobilized on polyamide (PA) hollow fibers for human serum albumin (HSA) adsorption from both aqueous solutions and human plasma. Different amounts of Reactive Green HE 4BD were incorporated on the PA hollow fibers by changing the dye attachment conditions, i.e. the initial dye concentration and the addition of sodium carbonate and sodium chloride. The maximum amount of dye attachment was obtained as 39.4 micromol x g(-1) when the hollow fibers were treated with 3 M HCl for 30 min before performing the dye attachment. HSA adsorption onto unmodified and dye-attached hollow fibers was investigated batchwise. The non-specific adsorption of HSA was low (6.0 mg/g hollow fiber). Dye attachment onto the hollow fibers significantly increased the HSA adsorption (86.7 mg/g). The maximum HSA adsorption was observed at pH 5.0. Higher HSA adsorption was observed from human plasma (198 mg HSA/g). The desorptions were performed by adding 0.1 M Tris/HCl buffer containing 0.5 M NaSCN or 1.0 M NaCl to the HSA solutions in which adsorption equilibria had been reached. The desorption results demonstrated that the adsorption of HSA to the adsorbent was reversible. Chemical structure of Reactive Green HE-4BD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号