首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An expression is derived for the surface energy σ as a function of the size and shape of a nanocrystal. It is shown that the wider the deviation of the shape parameter f from unity, the more pronounced the decrease in the surface energy σ with a decrease in the number N of atoms in the nanocrystal. The dependences of the average coordination number, the surface energy, and the melting temperature on the number N exhibit an oscillatory behavior with maxima at points corresponding to numbers of atoms forming a defect-free cube. The surface energy decreases with an increase in the temperature T. It is found that the smaller the nanocrystal size or the greater the deviation of the nanocrystal shape from the thermodynamically most stable shape (a cube), the larger the quantity-(dσ/dT). It is established that the nanocrystal undergoes melting when the surface energy decreases to a value at which it becomes independent of the nanocrystal size and shape. The conditions providing fragmentation and dendritization of the crystal are discussed. It is demonstrated that, at N>1000, the dependence σ(N) coincides, to a high accuracy, with the dependence of the surface tension of the nanocrystal on N. The inference is made that bimorphism is characteristic of nanocrystals. This implies that nanocrystals can have platelike and rodlike shapes with equal probability.  相似文献   

2.
3.
Numerical calculations based on the full potential muffin-tin orbitals method (FP-LMTO) within the local density approximation (LDA) and the local spin-density approximation (LSDA) to investigate the structural, electronic and thermodynamic properties of filled skutterudite EuFe4Sb12 are presented. The electronic band structure and density of states profiles prove that this material is a conductor. The present investigation is also extended to the elastic constants, such as the bulk modulus B, anisotropy factor A, shear modulus G, young's modulus E, Poisson's ratio ν, and the B/G ratio with pressure in the range of 0–40 GPa. The sound velocities and Debye temperatures are also predicted from the above constants. The variations of the primitive cell volume, expansion coefficient α, bulk modulus B, heat capacity (Cp and Cv), Debye temperature θD, Helmholtz free energy A, Gibbs free energy G, entropy S, and internal energy U with pressure and temperature in the range 0–3000 K are calculated successfully.  相似文献   

4.
The structural stability and mechanical properties of WC in WC-, MoC- and NaCl-type structures under high pressure are investigated systematically by first-principles calculations. The calculated equilibrium lattice constants at zero pressure agree well with available experimental and theoretical results. The formation enthalpy indicates that the most stable WC is in WC-type, then MoC-type finally NaCl-type. By the elastic stability criteria, it is predicted that the three structures are all mechanically stable. The elastic constants Cij, bulk modulus B, shear modulus G, Young?s modulus E and Poisson?s ratio ν of the three structures are studied in the pressure range from 0 to 100 GPa. Furthermore, by analyzing the B/G ratio, the brittle/ductile behavior under high pressure is assessed. Moreover, the elastic anisotropy of the three structures up to 100 GPa is also discussed in detail.  相似文献   

5.
Using pulse echo overlap measurement, the elastic behavior of amorphous carbon has been studied at ambient and low temperatures. The smaller ratio B/G of the bulk modulus to shear modulus and smaller Poisson's ratio σ at room temperature indicate that there is an intrinsic stiffening of transverse acoustic phonons in the amorphous carbon. The acoustic velocity and attenuation for longitudinal modes have been measured between 2.1 and 300 K at three frequencies of 7, 21 and 35 MHz, respectively. Their frequency and temperature dependence are observed. The elastic constant C11 increases with decreasing temperature and show enhanced stiffening at low temperatures. In the 130-220 K region, the abnormal change and effect of longitudinal velocity and attenuation with temperature and frequency, and a phase transition associated with structure relaxations are discussed.  相似文献   

6.
A theoretical study on the structural, elastic, electronic and lattice dynamic properties of AlxYyB1−xyN quaternary alloys in zinc-blend phase has been carried out with first-principles methods. Information on the lattice parameter, the lattice matching to available substrates and energy band-gaps is a prerequisite for many practical applications. The dependence of the lattice parameter a, bulk modulus B, elastic constants C11, C12 and C44, band-gaps, optical phonon frequencies (ωTO and ωLO), the static and high-frequency dielectric coefficients ε (0) and ε () and the dynamic effective charge Z? were analyzed for y=0, 0.121, 0.241, 0.362 and 0.483. A significant deviation of the bulk modulus from linear concentration dependence was observed. A set of isotropic elastic parameters and related properties, namely bulk and shear moduli, Young's modulus, Poisson's ratio are numerically estimated in the frame work of the Voigt-Reuss-Hill approximation. The resistance to changes in bond length and lateral expansion in AlxYyB1−xyN increase with increasing y concentration. We observe that at y concentration about 0.035 and 0.063, AlxYyB1−xyN changes from brittle to ductile and Γ-X indirect fundamental gap becomes Γ-Γ direct fundamental gap. There is good agreement between our results and the available experimental data for the binary compound AlN, which is a support for those of the quaternary alloys that we report for the first time.  相似文献   

7.
We have investigated structural and elastic properties of PtN2 under high pressures using norm-conserving pseudopotentials within the local density approximation (LDA) in the frame of density-functional theory. Calculated results of PtN2 are in agreement with experimental and available theoretical values. The a/a0, V/V0, ductility/brittleness, elastic constants Cij, shear modulus C′, bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio σ and anisotropy factor A as a function of applied pressure are presented. Through the quasi-harmonic Debye model, we also study thermodynamic properties of PtN2. The thermal expansion versus temperature and pressure, thermodynamic parameters X (X=Debye temperature or specific heat) with varying pressure P, and heat capacity of PtN2 at various pressures and temperatures are estimated.  相似文献   

8.
The temperature dependence of the specific (per atom) entropy and heat capacity of a nanocrystal is studied using a nanocrystal model in the form of a rectangular parallelepiped with variable surface shape. Accounting for the temperature dependence of the surface energy showed that the temperature dependence of the surface contribution to specific entropy is described by the same function that determines the temperature dependence of the isochoric heat capacity of a macrocrystal. Thus, at T → 0 K at T/Θ > 2 the surface contribution to the specific heat is zero. The maximal surface contribution to specific heat is reached at T/Θ = 0.2026 and is equal to c st/k B = 1.0115 (where k B is the Boltzmann constant, Θ is the characteristic temperature depending both on the size and the shape of the nanocrystal). The applicability of the Grüneisen rule for a nanocrystal both at low and high temperatures is studied. It has been found that a case when the surface contribution to specific heat would be negative c(N) < c(∞), i.e. c st(N) < 0 can occur for nanocrystals with a noncubic habitus.  相似文献   

9.
New ternary magnesium alloys AMgNi4 (A=Y, La, Ce, Pr and Nd) have been studied by First-Principles calculations within the generalized gradient approximation. The optimized structural parameters were in good agreement with the available experimental data. The calculated cohesive energies and formation enthalpies showed that these alloys had strong structural stability. Then the elastic constants Cij of these AMgNi4 alloys were calculated, and the bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio ν and anisotropy value A of polycrystalline materials were derived from the elastic constants, the related mechanical properties were further discussed. The electronic structures were also calculated to reveal the underlying mechanism for the structural stability and the elastic property.  相似文献   

10.
First-principles calculations of the crystal structure and the elastic properties of RuB2 have been carried out with the plane-wave pseudopotential density functional theory method. The calculated values are in very good agreement with experimental data as well as with some of the existing model calculations. The elastic constants cij, the aggregate elastic moduli (B, G, E), Poisson's ratio, and the elastic anisotropy with pressure have been investigated. Through the quasi-harmonic Debye model considering the phonon effects, the isothermal bulk modulus, the thermal expansions, Grüneisen parameters, and Debye temperatures depending on the temperature and pressure are obtained in the whole pressure range from 0 to 60 GPa and temperature range from 0 to 1100 K as well as compared to available data.  相似文献   

11.
The structural, elastic and electronic properties of Ti2SiN were studied by first-principle calculations. The calculated bond lengths of Ti-Si and Ti-C are 2.65 and 2.09 Å, respectively. The results show Ti2SiN is mechanically stable, and its bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio μ and anisotropy factor A are determined to be 182 GPa, 118 GPa, 291 GPa, 0.233 and 1.57, respectively. The calculated electronic structure indicates that Ti2SiN is anisotropic and conductive.  相似文献   

12.
Run-Yue Li 《哲学杂志》2016,96(10):972-990
First principles calculations were performed to systematically investigate structure properties, phase stability and mechanical properties of MB (M = Cr, Mo, W) monoborides in orthorhombic and tetragonal structures. The results of equilibrium structures are in good agreement with other available theoretical and experimental data. The elastic properties, including bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio ν were calculated by the Voigt-Reuss-Hill approximation. All considered monoborides are mechanically stable. The results of elastic anisotropies show that elastic anisotropy of orthorhombic structure is larger than that of tetragonal structure. Moreover, the minimum thermal conductivities were also estimated using the Cahill’s model, and the results indicate that the minimum thermal conductivities show a dependence on directions.  相似文献   

13.
The elastic, phonon and thermodynamic properties of the divalent alkaline-earth hexaboride SrB6 are investigated by using plane-wave pseudopotential density functional theory method. The calculated structure parameters and bulk modulus are well consistent with the available experiment and theoretical data. The pressure dependences of elastic constants Cij, bulk modulus B0, shear modulus G, Young's modulus E and Poisson's ratio σ are also presented. With these elastic parameters, we investigate the mechanical stability and compressibility of SrB6. For the thermodynamic properties, both phonon and quasi-harmonic Debye model methods are adopted. Through the comparison with experimental and other theoretical results, we found the method of quasi-harmonic Debye model is a little better. Moreover, the phonon dispersion relations are also obtained. It is found that there are two LO/TO splitting around 5 THz and 26 THz, respectively.  相似文献   

14.
The dependences of the specific surface energy, the surface tension, and the surface pressure on the size, the surface shape, and the temperature of a nanodiamond with a free surface have been investigated using the Mie-Lennard-Jones interatomic interaction potential. The nanocrystal has the form of a parallelepiped faceted by the (100) planes with a square base. The number of atoms N in the nanocrystal varies from 5 to ∞. The isothermal isomorphic dependences of the specific surface energy, its isochoric derivative with respect to the temperature, the surface tension, and the surface pressure on the nanodiamond size have been calculated at temperatures ranging from 20 to 4300 K. According to the results of the calculations, the surface energy under this conditions is positive, which indicates that the nanodiamond cannot be fragmented at temperatures up to 4300 K. The surface pressure for the nanodiamond P sf (N) ∼ N −1/3 is considerably less than the Laplace pressure P ls (N)−1/3N −1/3 for the same nanocrystal at the given values of the temperature, the density, and the number of atoms N. As the temperature increases from 20 to 4300 K, the lowering of the isotherm P sf (N) is considerably more pronounced than that of the isotherm P ls (N). At high temperatures, the isotherm P sf (N) changes the shape of the size dependence and goes to the range of extension of small nanocrystals. It has been demonstrated that the lattice parameter of the nanodiamond can either decrease or increase with a decrease in the nanocrystal size. The most significant change in the lattice parameter of the nanodiamond is observed at temperatures below 1000 K.  相似文献   

15.
Pressure-induced structural aspects and elastic properties of NaCl-type (B1) to CsCl-type (B2) structure in praseodymium chalcogenides and pnictides are presented. Ground-state properties are numerically computed by considering long-range Coulomb interactions, Hafemeister and Flygare type short-range overlap repulsion, and van der Waals interaction in the interionic potential. From the elastic constants, Poisson's ratio ν, the ratio RG/B of G (shear modulus) over B (bulk modulus), anisotropy parameter, shear and Young's moduli, Lamé's constant, Kleinman parameter, elastic wave velocity and thermodynamical property such as Debye temperature are calculated. Poisson's ratio ν and the ratio RG/B indicate that PrX and PrY are brittle in B1 phase and ductile in B2 phase. To our knowledge, this is the first quantitative theoretical prediction of the ductile (brittle) nature of praseodymium chalcogenides and pnictides and still awaits experimental confirmation.  相似文献   

16.
We investigate the structural and elastic properties of LaTiO3 by the plane-wave pseudopotential density functional theory method. The lattice constants, bulk modulus and its pressure derivative are obtained. These properties in the equilibrium phase are well consistent with the available experimental data. The pressure dependence of the elastic constants, ductility, mechanical stabilities, sound velocity and Debye temperatures are investigated for the first time. From the ratio G/B, we conclude that LaTiO3 is ductile at 0 GPa and becomes more ductile at high pressure. In addition, the anisotropy factors for every symmetry plane and axis as well as linear bulk modulus at diverse pressures have been obtained.  相似文献   

17.
高导无氧铜的高压与高应变率本构模型研究   总被引:1,自引:0,他引:1       下载免费PDF全文
基于Y/GG/B为常数的假设,构建了高导无氧铜的七种高压与高应变率本构模型.对于高导无氧铜进行了平面冲击波试验,采用纵向与横向锰铜应力计记录了试件中的纵向与横向应力,从而得到了屈服应力历史.用所构建的七种本构模型进行了数值模拟,并与高导无氧铜的平面冲击波试验结果进行比较.结果表明,平面冲击波载荷下高导无氧铜的屈服强度对于压力、密度、温度以及塑性应变的依赖性是本构描述的关键.而由Hopkinson试验取得的高导无氧铜高应变率本构模型,并不适合描述平面冲击波载荷下的本构特性. 关键词: 本构模型 高导无氧铜 平面冲击波试验 锰铜应力计  相似文献   

18.
The isobaric and isothermal volume derivatives of In B, In μ and In μ' are investigated, where B, μ and μ' are the isothermal bulk modulus and the two shear moduli, respectively, of a cubic crystal. In the case of the bulk modulus, the temperature independence of αB (where α is the volume thermal expansion) for a large number of materials, ensures that the derivatives are constant and approximately equal, while for the shear moduli, evidence is advanced that the isothermal derivatives are constant along an isotherm, but not along an isobar except at high temperatures near the melting point. The relationships satisfied by the bulk modulus enable the explicit temperature and pressure dependence of the molar volume, V, thermal expansion, and bulk modulus to be determined. The most adequate representation of the volume dependence of the Grüneisen parameter, γ, appears to be that γ/V is independent of volume between the Debye and melting temperatures.  相似文献   

19.
A general approach is formulated to the design of crystal-forming fullerene-like clusters X n Y n from which zeolite-like covalent crystals based on IV-IV, III-V, and II-VI binary semiconductor compounds with diamond-like sp 3 bonds can be constructed and synthesized by means of copolymerization through faces. A number of the smallest sized crystal-forming boron nitride clusters are constructed, such as the B12N12, B16N16, B18N18, B24N24, B36N36, and B 60N60 fulborenes. The optimized configurations, electronic structures, charge transfers, band gaps, total energies, cohesive energies, and electron density maps of the clusters are calculated using the spin-restricted Hartree-Fock method in the 6–31G basis set. Comparative calculations of the B60N60 fulborene with the use of the density functional theory method have demonstrated that the spin-restricted Hartree-Fock method in the 6–31G basis set is optimum from the standpoint of the accuracy and efficiency.  相似文献   

20.
The elastic and thermodynamic properties of CsCl-type structure CaB6 under high pressure are investigated by first-principles calculations based on plane-wave pseudopotential density functional theory method within the generalized gradient approximation (GGA). The calculated lattice parameters of CaB6 under zero pressure and zero temperature are in good agreement with the existing experimental data and other theoretical data. The pressure dependences of the elastic constants, bulk modulus B (GPa), and its pressure derivative B′, shear modulus G, Young's modulus E, elastic Debye temperature ΘB, Zener's anisotropy parameter A, Poisson ratios σ, and Kleinmann parameter ζ are also presented. An analysis for the calculated elastic constants has been made to reveal the mechanical stability of CaB6 up to 100 GPa. The thermodynamic properties of the CsCl-type structure CaB6 are predicted using the quasi-harmonic Debye model. The pressure-volume-temperature (P-V-T) relationship, the variations of the heat capacity CV, Debye temperature ΘD, and the thermal expansion α with pressure P and temperature T, as well as the Grüneisen parameters γ are obtained systematically in the ranges of 0-100 GPa and 0-2000 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号