首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[{Micro-(phthalazine-N2:N3)}Fe2(micro-CO)(CO)6](1) reacts with organolithium reagents, RLi (R = CH3, C6H5, p-CH3C6H4, p-CH3OC6H4, p-CF3C6H4, p-C6H5C6H4), followed by treatment with Me3SiCl to give the novel diiron carbonyl complexes with a saturated N-N six-membered diazane ring ligand, [{C6H4CH(R)NNCH2}Fe2(C=O)(CO)6](2, R = CH3; 3, R = C6H5; 4, R =p-CH3C6H4; 5, R =p-CH3OC6H4; 6, R =p-CF3C6H4; 7, R =p-C6H5C6H4). Compounds 4 and 5 were treated with [(NH4)2Ce(NO3)6] to afford the aryl-substituted phthalazine-coordinated diiron carbonyl compounds [(micro-{1-(p-CH3C6H4)-phthalazine-N2:N3})Fe2(micro-CO)(CO)6](8) and [(micro-{1-(p-CH3OC6H4)-phthalazine-N2:N3})Fe2(micro-CO)(CO)6](9), respectively. The structures of complexes 4 and 9 have been established by X-ray diffraction studies.  相似文献   

2.
The chemical interconversions observed for a novel family of trihydroxymethyl ethane (THME-H(3)) ligated Sn(II) compounds have been determined using single-crystal X-ray and (119)Sn NMR experiments. (mu-THME)(2)Sn(3) (1) was isolated from the reaction of 3 equiv of [Sn(NR(2))(2)](2) (R = SiMe(3)) with 4 equiv of THME as a unique trinuclear species capped above and below the plane of Sn atoms by two THME ligands. Upon reaction with "Sn(NR(2))(2)", compound 1 rearranged to yield another novel molecule [(mu-THME)Sn(2)(NR(2))](2) (2). Compound 2 could also be formed directly from the stoichiometric mixture of THME-H(3) and [Sn(NR(2))(2)](2). Further studies revealed that 1 would also rearrange in the presence of Sn(OR)(2) to form [(mu-THME)Sn(2)(mu-OR)](2) [OR = OMe (3), OCH(2)Me (4), OCH(2)CH(Me)CH(2)CH(3) (5), OCH(2)CMe(3) (6, ONep), OC(6)H(5) (7, not structurally characterized), OC(6)H(4)Me-3 (8), OC(6)H(4)Me-2 (9), OC(6)H(3)(Me)(2)-2,6 (10), OC(6)H(3)(CHMe(2))(2)-2,6 (11). Additionally, 3-11 could by synthesized from the reaction of 2 and the appropriate H-OR. (119)Sn solution NMR studies of 2-11, in THF-d(8), indicate that an equilibrium between the parent complex and its disassociation products (1 and the free parent Sn alkoxy or amide precursor) exists at room temperature. This is a likely reason behind the ease of interconversion observed for 1. The generality of this exchange was further verified through the reaction of 1 with [Ti(mu-ONep)(ONep)(3)](2), which led to the isolation of (mu-ONep)(2)Sn(3)(mu-THME)(2)Ti(ONep)(2) (12). For 12, the solid-state structure was maintained in solution with no indication of an equilibrium.  相似文献   

3.
The reactions of the cationic, diiron-bridging carbyne complexes [Fe(2)(mu-CAr)(CO)(4)(eta(8)-C(8)H(8))]BF(4) (1, Ar=C(6)H(5); 2, Ar=p-CH(3)C(6)H(4); 3, Ar=p-CF(3)C(6)H(4)) with LiN(C(6)H(5))(2) in THF at low temperature gave novel N-nucleophilic-addition products, namely, the neutral, diiron-bridging carbyne complexes [Fe(2)(mu-CAr)(CO)(4)(eta(7)-C(8)H(8)N(C(6)H(5))(2))] (4, Ar=C(6)H(5); 5, Ar=p-CH(3)C(6)H(4); 6, Ar=p-CF(3)C(6)H(4))). Cationic bridging carbyne complexes 1-3 react with (C(2)H(5))(2)NH, (iC(3)H(7))(2)NH, and (C(6)H(11))(2)NH under the same conditions with ring cleavage of the COT ligand to produce the novel diiron-bridging carbene inner salts [Fe(2)[mu-C(Ar)C(8)H(8)NR(2)](CO)(4)] (7, Ar=C(6)H(5), R=C(2)H(5); 8, Ar=p-CH(3)C(6)H(4), R=C(2)H(5); 9, Ar=p-CF(3)C(6)H(4), R=C(2)H(5); 10, Ar=C(6)H(5), R=iC(3)H(7); 11, Ar=p-CH(3)C(6)H(4), R=iC(3)H(7); 12, Ar=p-CF(3)C(6)H(4), R=iC(3)H(7); 13, Ar=C(6)H(5), R=C(6)H(11); 14, Ar=p-CH(3)C(6)H(4), R=C(6)H(11), 15, Ar=p-CF(3)C(6)H(4), R=C(6)H(11)). Piperidine reacts similarly with cationic carbyne complex 3 to afford the corresponding bridging carbene inner salt [Fe(2)[mu-C(Ar)C(8)H(8)N(CH(2))(5)](CO)(4)] (16). Compound 9 was transformed into a new diiron-bridging carbene inner salt 17, the trans isomer of 9, by heating in benzene. Unexpectedly, the reaction of C(6)H(5)NH(2) with 2 gave a novel COT iron-carbene complex [Fe(2)[=C(C(6)H(4)CH(3)-p)NHC(6)H(5)](mu-CO)(CO)(3)(eta(8)-C(8)H(8))] (18). However, the analogous reactions of 2-naphthylamine with 2 and of p-CF(3)C(6)H(4)NH(2) with 3 produce novel chelated iron-carbene complexes [Fe(2)[=C(C(6)H(4)CH(3)-p)NC(10)H(7)](CO)(4)(eta(2):eta(3):eta(2)-C(8)H(9))] (19) and [Fe(2)[=C(C(6)H(4)CF(3)-p)NC(6)H(4)CF(3)-p](CO)(4)(eta(2):eta(3):eta(2)-C(8)H(9))] (20), respectively. Compound 18 can also be transformed into the analogous chelated iron-carbene complex [Fe(2)[=C(C(6)H(4)CH(3)-p)NC(6)H(5)](CO)(4)(eta(2):eta(3):eta(2)-C(8)H(9))] (21). The structures of complexes 6, 9, 15, 17, 18, and 21 have been established by X-ray diffraction studies.  相似文献   

4.
An efficient method for the construction of two carbon-carbon bonds in a regio- and stereoselective fashion via palladium-catalyzed assembling of allenes, organic halides, and arylboronic acids is described. Organic halides (RI = C(6)H(5)I, o-, m-, and p-CH(3)OC(6)H(4)I, p-C(2)H(5)OCOC(6)H(4)I, p-CH(3)COC(6)H(4)I, p-CH(3)C(6)H(4)I, p-CH(3)C(6)H(4)Br, p-CH(3)C(6)H(4)Cl, p-NO(2)C(6)H(4)I, p-NO(2)C(6)H(4)Br, p-NO(2)C(6)H(4)Cl, p-IC(6)H(4)Cl, 1-iodonaphthalene, 2-iodothiophene, 3-iodo-2-cyclopenten-1-one, 3-iodo-5,5-dimethyl-2-cyclohexen-1-one, C(6)Eta(5)(Br)C=CH(2) and ICH(2)CO(2)C(2)H(5)), and arylboronic acids (ArB(OH)(2), Ar = C(6)H(5), p-CH(3)OC(6)H(4), m-NO(2)C(6)H(4), p-FC(6)H(4), 1-C(10)H(7), and o-, m-, and p-CHOC(6)H(4)) undergo Suzuki-type three-component assembling with 1,1-dimethylallene to give the corresponding allylic derivatives, (CH(3))(2)=CRCH(2)Ar, in DMF at 70 degrees C in the presence of CsF using Pd(dba)(2) as the catalyst. Higher yields of products were obtained for aryl iodides than for the corresponding aryl bromides and chlorides. This three-component assembling is highly regioselective, with the organic group on halides adding to the middle carbon and the aryl group on arylboronic acids to the unsubstituted terminal carbon of allenes. Monosubstituted allenes 1b-e (cyclopentylallene, cyclohexylallene, tert-butylallene, and n-butylallene) also undergo similar assembling reaction with organic halides and arylboronic acids to afford the corresponding products 7a-i with high regio- and stereoselectivity. Based on the known palladium chemistry, a mechanism is proposed to account for the catalytic reaction and the stereochemistry.  相似文献   

5.
陈家碧  雷桂馨  殷建国 《化学学报》1989,47(11):1105-1108
五羰基铁, Fe(CO)~5(1), 与芳基锂(ArLi)在乙醚中于低温下反应, 所生成的酰羰基锂中间体在水溶液中于0℃用 Et~3OBF~4烷基化, 制得六个标题配合物(co)~4Fec(OC~1H~5)Ar(Ar:C~6H~5, 2;o-CH~3C~6H~4,3;p-CH~3C~6H~4, 4;p-CH~3OC~6H~4,5;C~6Cl~5,6;p-CF~3C~6H~4,7). 当用p-CF~3C~6H~4Li作为亲核试剂与1 反应时, 除生成7外, 还获得副产物对三氟甲基苯丙酮,p-CF~3C~6H~4COC~2H~5(8)。  相似文献   

6.
本文研究了苯基锂和对、间、邻甲苯基锂及对、邻甲氧苯基锂与6,6-二烷基富烯环外双键加成反应的立体效应。在室温下于乙醚溶剂中,6,6-二烷基富烯同上述芳基锂反应,形成取代环戊二烯基锂,经水解给出含或不含手性碳的叔烷基环戊二烯。  相似文献   

7.
异戊二烯三羰基铁(1)与芳基锂ArLi(Ar=C6H5,ρ-CH3C6H4,ρ-CH3OC6H4,ρ-CF3C6H4)在低温下反应,再用Et3OBF4烷基化,可获得组成为C5H8(CO)2FeC(OC2H5)Ar的标题化合物的异构化产物(2一5)。当用LiC6Cl5作亲核试剂,在相同条件下与1反应时,只生成已知的配合物(CO4)FeC(OC2H5)C6Cl5(6)。由单晶X射线衍射数据推断出, 2和6的分子结构都属于单斜晶系,Z=4. 2的空间群为C2h[5]-P21/n,a=8.544(2), b=14.494(5), c=12.309(4)`A,β=96.16(2)`;6的空间群为C2h[5]-P21/c, a=14.126(3), b=6.805(1), c=19.182(5)A,β=103.58(2)`. 2和6的结构用SHELXTL直接法程序解出并经块矩阵最小二乘法修正,R分别为0.066和0.043。  相似文献   

8.
The synthesis, characterization, and reactivity of the homoleptic uranium(IV) alkyls U(CH(2)C(6)H(5))(4) (1-Ph), U(CH(2)-p-CH(3)C(6)H(4))(4) (1-p-Me), and U(CH(2)-m-(CH(3))(2)C(6)H(3))(4) (1-m-Me(2)) are reported. The addition of 4 equiv of K(CH(2)Ar) (Ar = Ph, p-CH(3)C(6)H(4), m-(CH(3))(2)C(6)H(3)) to UCl(4) at -108 °C produces 1-Ph in good yields and 1-p-Me and 1-m-Me(2) in moderate yields. Further characterization of 1-Ph by X-ray crystallography confirmed η(4)-coordination of each benzyl ligand to the uranium center. Magnetic studies produced an effective magnetic moment of 2.60 μ(B) at 23 °C, which is consistent with a tetravalent uranium 5f(2) electronic configuration. Addition of 1 equiv of the redox-active α-diimine (Mes)DAB(Me) ((Mes)DAB(Me) = [ArN═C(Me)C(Me)═NAr]; Ar = 2,4,6-trimethylphenyl (Mes)) to 1-Ph results in reductive elimination of 1 equiv of bibenzyl (PhCH(2)CH(2)Ph), affording ((Mes)DAB(Me))U(CH(2)C(6)H(5))(2) (2-Ph). Treating an equimolar mixture of 1-Ph and 1-Ph-d(28) with (Mes)DAB(Me) forms the products from monomolecular reductive elimination, 2-Ph, 2-Ph-d(14), bibenzyl, and bibenzyl-d(14). This is confirmed by (1)H NMR spectroscopy and GC/MS analysis of both organometallic and organic products. Addition of 1 equiv of 1,2-bis(dimethylphosphino)ethane (dmpe) to 1-Ph results in formation of the previously synthesized (dmpe)U(CH(2)C(6)H(5))(4) (3-Ph), indicating the redox-innocent chelating phosphine stabilizes the uranium center in 3-Ph and prevents reductive elimination of bibenzyl. Full characterization for 3-Ph, including X-ray crystallography, is reported.  相似文献   

9.
Treatment of [Li(L1)]2 (1) or K(L2) (2) with SnX2 in Et2O yielded the heteroleptic beta-diketiminatotin(II) halides Sn(L1)Cl (3a), Sn(L1)Br (3b) or Sn(L2)Cl (4), even when an excess of the alkali metal beta-diketiminate was used [L1={N(R)C(Ph)}2CH, L2={N(R)C(Ph)CHC(But)N(R)}, R = SiMe3]. From and half an equivalent each of SnCl2.2H2O and SnCl2, or one equivalent of SnCl2.2H2O, the product was Sn(L3)Cl (5) or Sn(L4)Cl (6), in which one or both of the N-R bonds of L1 had been hydrolytically cleaved; the compound Sn(L5)Cl (7) was similarly obtained from and an equivalent portion of SnCl2.2H2O [L3={N(R)C(Ph)CHC(But)N(H)}, L4={N(H)C(Ph)CHC(But)N(H)} and L5={N(H)C(Ph)}2CH]. The halide exchange between 3a and 3b, studied by two-dimensional (119)Sn{1H}-NMR spectroscopy, is attributed to implicate a (mu-Cl)(mu-Br)-dimeric intermediate or transition state. The 13C{1H}-NMR spectra of or showed two distinct resonances for each group, which coalesced on heating, corresponding to DeltaG(338 K)= 69.4 (3a) or 72.8 (3b) kJ mol(-1). The chloride ligand of was readily displaced by treatment with NaNR2, CF3SO3H or CH2(COPh)2, yielding Sn(L1)X [X = NR2 (8), O3SCF3 (9) or {OC(Ph)}2CH (10)]. Oxidative addition of sulfur or selenium to gave the tin(IV) terminal chalcogenides Sn(E)(L1)(NR2)[E = S (11) or Se (12)]. The X-ray structures of the cocrystal of 3a/3b and of the crystalline compounds 5, 6, 8, 11 and are presented, as well as multinuclear NMR spectra of each of the new compounds.  相似文献   

10.
测定了(p-CH3OC6H4)2TeO存在下M2(CO)10(M=Mn,Re)的CO取代反应速率及活化参数。其表观速率常数分别与M2(CO)10和(p-CH3OC6H4)2TeO的浓度的一次方成正比。本文所建议的缔合机理与前人用(CH3)3NO作氧原子转移试剂的相应反应所提出的机理相似。讨论了在(CH3)3NO和(p-CH3OC6H4)2TeO存在下影响M2(CO)10的CO取代反应速率的因素。  相似文献   

11.
用环戊二烯(三羰基铁)与芳基锂在低温时反应, 生成的酰羰基锂盐随后在CH2Cl2中于-60℃或在水溶液中于0℃用Et3OBF4烷基化, 以中等产率获得组成为C5H5(CO)2Fe(COAr)的5个π-环戊二烯基(二羰基)(芳甲酰基)铁络合物, 新化合物用元素分析, IR, HNMR和质谱鉴定了, 并用X射线衍射研究了C5H5(CO)2Fe(p-CF3C6H4CO)的晶体结构.  相似文献   

12.
A variety of hexaorganotellurium compounds, Ar(6-n)(CH3)nTe [Ar=4-CF3C6H4, n=0 (1a), n=1 (3a), n=2 (trans-4a and cis-4a), n=3 (mer-5a), n=4 (trans-6a); Ph, n=0 (1b), n=1 (3b), n=2 (trans-4b); 4-CH3C6H4, n=0 (1c), n=1 (3c), n=2 (trans-4c), n=4 (trans-6c); 4-BrC6H4, n=0 (1d)] and Ar5(R)Te [Ar=4-CF3C6H4, R=4-CH3OC6H4 (8); Ar=4-CF3C6H4, R=vinyl (9), Ar=Ph, R=vinyl (10), Ar=4-CF3C6H4, R=PhSCH2 (11), Ar=Ph, R=PhSCH2 (12), Ar=4-CF3C6H4, R=nBu (13)] and pentaorganotellurium halides, Ar5TeX [Ar=4-CF3C6H4, X=Cl (2a-Cl), X=Br (2a-Br); Ar=Ph, X=Cl (2b-Cl), X=Br (2b-Br); Ar=4-CH3C6H4, X=Cl (2c-Cl), X=Br (2c-Br); Ar=4-BrC6H4, X=Br (2d-Br)] and (4-CF3C6H4)4(CH3)TeX [X=Cl (trans-7a-Cl) and X=Br (trans-7a-Br)] were synthesized by the following methods: 1) one-pot synthesis of 1 a, 2) the reaction of SO2Cl2 or Br2 with Ar5Te(-)Li+ generated from TeCl4 or TeBr4 with five equivalents of ArLi, 3) reductive cleavage of Ar(6-m)(CH3)(m)Te (m=0 or 2) with KC8 followed by treatment with CH3I, 4) valence expansion reaction from low-valent tellurium compounds by treatment with KC8 followed by reaction with CH3I, 5) nucleophilic substitution of Ar(6-y-z)(CH3)zTeX(y-z) (X=Cl, Br, OTf; z=0, 1; y=1, 2) with organolithium reagents. The scope and limitations and some details for each method are discussed and electrophilic halogenation of the hexaorganotellurium compounds is also described.  相似文献   

13.
叔-丁基醚热分解反应的量子化学研究   总被引:2,自引:0,他引:2  
用AM1方法研究了叔-丁基醚热分解反应,发现这类化合物可经过四元环过渡态分解成丁烯和醇或酚。  相似文献   

14.
The N,N'-bis(sulfonyl)diaminosilane TsdmsinH(2) (TsdmsinH(2) = (CH(3))(2)Si(NHTs)(2), Ts = p-CH(3)C(6)H(4)SO(2)) reacted with [Cp*IrCl(2)](2) (Cp* = eta(5)-C(5)(CH(3))(5)) in the presence of a base to give the coordinatively unsaturated (silylenediamido)iridium complex [Cp*Ir(Tsdmsin)] (2), which was further converted to the 18e adducts [Cp*Ir(Tsdmsin)L] (L = P(C(6)H(5))(3) (3a), P(OC(2)H(5))(3), CO); the reactions of 2 and 3a with water led to the formation of the imido-bridged dinuclear complex [Cp*Ir(micro(2)-NTs)(2)IrCp*] and the bis(amido) complex [Cp*Ir(NHTs)(2){P(C(6)H(5))(3)}], respectively.  相似文献   

15.
The Staudinger reaction of N(CH2CH2NR)3P [R = Me (1), Pr (2)] with 1 equiv of N3SO2C6H4Me-4 gave the ionic phosphazides [N(CH2CH2NR)3PN][SO2C6H4Me-4] [R = Me (3), R = Pr (5a)], and the same reaction of 2 with N3SO2C6H2Me3-2,4,6 gave the corresponding aryl sulfinite 5b. On the other hand, the reaction of 1 with 0.5 equiv of N3SO2Ar (Ar = C6H4Me-4) furnished the novel ionic phosphazide [[N(CH2CH2NMe)3P]2(mu-N3)][SO2Ar] (6). Data that shed light on the mechanistic pathway leading to 3 were obtained by low temperature 31P NMR spectroscopy. A crystal and molecular structure analysis of the phosphazide sulfonate [N(CH2CH2NMe)3PN3][SO3C6H4Me-4] (4), obtained by atmospheric oxidation of 3, indicated an ionic structure, the cationic part of which is stabilized by a transannular P-N bond. A crystal and molecular structure analysis of 6 also indicated an ionic structure in which the cation features two untransannulated N(CH2CH2NMe)3P cages bridged by an azido group in an eta 1: mu: eta 1 fashion. The reaction of P(NMe2)3 with N3SO2Ar (Ar = C6H4Me-4) in a 1:0.5 molar ratio furnished [[(Me2N)3P]2(mu-N3)][SO2-Ar] (11) in quantitative yield. On the other hand, the same reaction involving a 1:1 molar ratio of P(NMe2)3 and N3SO2Ar produced a mixture of 11, [(Me2N)3PN3][SO2Ar] (12), and the iminophosphorane (Me2N)3P=NSO2Ar (10). In contrast, the bicyclic tris(amino)phosphines MeC(CH2NMe)3P (7) and O=P(CH2NMe)3P (8) reacted with N3SO2-Ar (Ar = C6H4Me-4) to give the iminophosphorane MeC(CH2NMe)3P=NSO2Ar (14) (structured by X-ray means) and O=P(CH2NMe)3P=NSO2Ar (16) via the intermediate phosphazides MeC(CH2NMe)3PN3SO2Ar (13) and O=P(CH2NMe)3PN3SO2Ar (15), respectively. The variety of products obtained from the reactions of arylsulfonyl azides with proazaphosphatranes (1 and 2), acyclic P(NMe2)3, bicyclic tris(amino)phosphines 7 and 8 are rationalized in terms of steric and basicity variations among the phosphorus reagents.  相似文献   

16.
Six t(3)-aryl-r(2),c(4)-bisethoxycarbonyl-t(5)-hydroxy-c(5)-methylcyclohexanones (6-11) were synthesized by condensing ArCHO (Ar = Ph, p-O(2)NC(6)H(4), p-CH(3)OC(6)H(4), p-ClC(6)H(4), m-O(2)NC(6)H(4) and m-C(6)H(5)O(6)H(4)) with ethyl acetoacetate in the presence of methylamine and their (1)H and (13)C NMR spectra were recorded. (1)H-(1)H COSY and NOESY spectra were recorded for 6 and 7 and also HSQC and HMBC spectra for 6 and 8. Elemental analysis was carried out for all compounds. The mass spectrum was recorded for 8. All analytical data are consistent with the proposed molecular formulae. Analysis of NMR spectral data suggests that these compounds largely adopt chair conformations with the hydroxyl group occupying an axial orientation and all the other substituents occupying equatorial orientations. Long-range coupling (2-3 Hz) between the OH proton and the axial methylene proton at C-6 is observed in 6, 7, 8 and 11.  相似文献   

17.
Pentacarbonyl-7H-indenediiron, [Fe2(CO)5(eta3,eta5-C9H8)] (1), reacts with aryllithium, ArLi (Ar = C6H5, p-C6H5C6H4), followed by alkylation with Et3OBF4 to give novel 7H-indene-coordinated diiron bridging alkoxycarbene complexes [Fe2{mu-C(OC2H5)Ar}(CO)4(eta4,eta4-C9H8)] (2, Ar = C6H5; 3, Ar = p-C6H5C6H4). Complexes 2 and 3 react with HBF4.Et2O at low temperature to yield cationic bridging carbyne complexes [Fe2(mu-CAr)(CO)4(eta4,eta4-C9H8)]BF4 (4, Ar = C6H5; 5, Ar = p-C6H5C6H4). Cationic 4 and 5 react with NaBH4 in THF at low temperature to afford diiron bridging arylcarbene complexes [Fe2{mu-C(H)Ar}(CO)4(eta4,eta4-C9H8)] (6, Ar = C6H5; 7, Ar = p-C6H5C6H4). The similar reactions of 4 and 5 with NaSC6H4CH3-p produce the bridging arylthiocarbene complexes [Fe2{mu-C(Ar)SC6H4CH3-p}(CO)4(eta4,eta4-C9H8)] (8, Ar = C6H5; 9, Ar = p-C6H5C6H4). Cationic 4 and 5 can also react with anionic carbonylmetal compounds Na[M(CO)5(CN)] (M = Cr, Mo, W) to give the diiron bridging aryl(pentacarbonylcyanometal)carbene complexes [Fe2{mu-C(Ar)NCM(CO)5}(CO)4(eta4,eta4-C9H8)] (10, Ar = C6H5, M = Cr; 11, Ar = p-C6H5C6H4, M = Cr; 12, Ar = C6H5, M = Mo; 13, Ar = p-C6H5C6H4, M = Mo; 14, Ar = C6H5, M = W; 15, Ar = p-C6H5C6H4, M = W). Interestingly, in CH2Cl2 solution at room temperature complexes 10-15 were transformed into the isomerized 7H-indene-coordinated monoiron complexes [Fe(CO)2(eta5-C9H8)C(Ar)NCM(CO)5] (16, Ar = C6H5, M = Cr; 17, Ar = p-C6H5C6H4, M = Cr; 18, Ar = C6H5, M = Mo; 19, Ar = p-C6H5C6H4, M = Mo; 20, Ar = C6H5, M = W; 21, Ar = p-C6H5C6H4, M = W), while complex 3 was converted into a novel ring addition product [Fe2{C(OC2H5)C6H4C6H5-p-(eta2,eta5-C9H8)}(CO)5] (22) under the same conditions. The structures of complexes 2, 6, 8, 14, 18 and 22 have been established by X-ray diffraction studies.  相似文献   

18.
A series of diorganotin(IV) compounds of the type [R(2)Sn(pca)Cl](3)(R = CH(3); (n)Bu; C(6)H(5); C(6)H(5)CH(2); Hpca = 2-pyrazinecarboxylic acid), R(2)Sn(pca)(2)(mH(2)O)xnH(2)O (m= 1: R = CH(3), n= 2, R =(n)Bu, n= 0; m= 0, n= 0: R =(n)Bu, C(6)H(5), C(6)H(5)CH(2)) and (Et(3)NH)(+)[R(2)Sn(pca)(2)Cl](-)xmH(2)O (m= 0: R = CH(3), (n)Bu, C(6)H(5)CH(2); m= 1: R = C(6)H(5)) have been obtained by reactions of 2-pyrazinecarboxylic acid with diorganotin(iv) dichloride in the presence of sodium ethoxide or triethylamine. All compounds were characterized by elemental, IR and NMR spectra analyses. Except for compounds, and, the others were also characterized by X-ray crystallography diffraction analyses, which revealed that compounds and were trinuclear macrocyclic structures with six-coordinate tin(IV) atoms, compounds and were monomeric structures with seven-coordinate tin(IV) atoms, compounds and were polymeric chain structures with seven-coordinate tin(IV) atoms and compounds and were stannate with seven-coordinate tin(IV) atoms.  相似文献   

19.
Berreau LM  Chen J  Woo LK 《Inorganic chemistry》2005,44(21):7304-7306
The imido(meso-tetra-p-tolylporphyrinato)molybdenum(IV) complexes, (TTP)Mo=NR, where R = C6H5 (1a), p-CH3C6H4 (1b), 2,4,6-(CH3)3C6H2 (1c), and 2,6-(i-Pr)2C6H4 (1d), can be prepared by the reaction of (TTP)MoCl2 with 2 equiv of LiNHR in toluene. Upon treatment of the imido complexes with pyridine derivatives, NC5H4-p-X (X = CH3, CH(CH3)2, C[triple bond]N), new six-coordinate complexes, (TTP)Mo=NR.NC5H4-p-X, were observed. The reaction between the molybdenum imido complexes, (TTP)Mo=NC6H5 or (TTP)Mo=NC6H4CH3, and (TTP)Ti(eta2-PhC[triple bond]CPh) resulted in complete imido group transfer and two-electron redox of the metal centers to give (TTP)Mo(eta2-PhC[triple bond]CPh) and (TTP)Ti=NC6H5 or (TTP)Ti=NC6H4CH3.  相似文献   

20.
Olefin complexes (silox)(3)M(ole) (silox = (t)Bu(3)SiO; M = Nb (1-ole), Ta (2-ole); ole = C(2)H(4), C(2)H(3)Me, C(2)H(3)Et, C(2)H(3)C(6)H(4)-p-X (X = OMe, H, CF(3)), C(2)H(3)(t)Bu, (c)C(5)H(8), (c)C(6)H(10), (c)C(7)H(10) (norbornene)) rearrange to alkylidene isomers (silox)(3)M(alk) (M = Nb (1=alk), Ta (2=alk); alk = CHMe, CHEt, CH(n)Pr, CHCH(2)C(6)H(4)-p-X (X = OMe, H, CF(3) (Ta only)), CHCH(2)(t)Bu, (c)C(5)H(8), (c)C(6)H(10), (c)C(7)H(10) (norbornylidene)). Kinetics and labeling experiments suggest that the rearrangement proceeds via a delta-abstraction on a silox CH bond by the beta-olefin carbon to give (silox)(2)RM(kappa(2)-O,C-OSi(t)Bu(2)CMe(2)CH(2)) (M = Nb (4-R), Ta (6-R); R = Me, Et, (n)Pr, (n)Bu, CH(2)CH(2)C(6)H(4)-p-X (X = OMe, H, CF(3) (Ta only)), CH(2)CH(2)(t)Bu, (c)C(5)H(9), (c)C(6)H(11), (c)C(7)H(11) (norbornyl)). A subsequent alpha-abstraction by the cylometalated "arm" of the intermediate on an alpha-CH bond of R generates the alkylidene 1=alk or 2=alk. Equilibrations of 1-ole with ole' to give 1-ole' and ole, and relevant calculations on 1-ole and 2-ole, permit interpretation of all relative ground and transition state energies for the complexes of either metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号