首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The symmetries of a system of differential equations allowed the transformation of its solutions to a solution of this system. New analytical exact solutions of a system of two-dimensional ideal plasticity equations were constructed from two well-known solutions, that for a circular cavity stressed by normal pressure, and Prandtl's solution for a block compressed between perfectly rough plates, for the case where the thickness of the block was rather small. A mechanical sense of new solutions was discussed.  相似文献   

2.
IntroductionWhencontrollingthedynamicstabilityoflargerotatingmachinery ,notonlytheproblemwhetherequilibriumstateofthesystemisstablemustbesolved ,butalsotheregionofasymptoticstabilityneedtobedetermined .Whent→∞ ,solutionsunderinitialconditionswithinsuchre…  相似文献   

3.
以某货车的主副钢板弹簧悬架为模型建立两自由度分段线性和轮胎非线性耦合动力学方程,采用打靶法求耦舍系统的周期解;将所得结果与近似解析法分析的结果进行比较,并利用Floquet理论判断周期解的稳定性。研究结果表明:当激励频率在等效固有频率附近时系统的周期解不稳定,其Floquet乘数的模大于1,系统振动剧烈,KBM法得到的周期解将产生较大误差;当路面工况突然发生改变或路面工况不变而载重发生较大变化时都有可能发生舅毡跃现象,造成系统的不稳定;周期解的长期时域图和Floquet理论验证了这一现象;  相似文献   

4.
Second-order dynamical systems are of paramount importance as they arise in mechanics and many applications. It is essential to have workable explicit criteria in terms of the coefficients of the equations to effect reduction and solutions for such types of equations. One important aspect is linearization by invertible point transformations which enables one to reduce a non-linear system to a linear system. The solution of the linear system allows one to solve the non-linear system by use of the inverse of the point transformation. It was proved that the n-dimensional system of second-order ordinary differential equations obtained by projecting down the system of geodesics of a flat (n+1)-dimensional space can be converted to linear form by a point transformation. This is a generalization of the Lie linearization criteria for a scalar second-order equation. In this case it is of the maximally symmetric class for a system and the linearizing transformation as well as the solution can be directly written down. This was explicitly used for two-dimensional dynamical systems. The criteria were written down in terms of the coefficients and the linearizing transformation allowed for the general solution of the original system. Here the work is extended to a three-dimensional dynamical system and we find explicit criteria, including the linearization test given in terms of the coefficients of the cubic in the first derivatives of the system and the construction of the transformations, that result in linearization. Applications to equations of classical mechanics and relativity are given to illustrate our results.  相似文献   

5.
IntroductionAlmostalltheperturbationmethodsdependuponthesmallparameterassumption ,thatis,thesolutionofanonlinearequationcanbeexpressedintheformofpowerseriesinasmallparameterεu=u0 +εu1+ε2 u2 +… ,( 1 )whereu0 isthesolutionofunperturbedequationwhenε =0 ,thecorrection…  相似文献   

6.
We are concerned with the asymptotic behavior of a solution to the initial value problem for a system of hyperbolic conservation laws coupled with elliptic equations. This kind of problem was first considered in our previous paper. In the present paper, we generalize the previous results to a broad class of hyperbolic-elliptic coupled systems. Assuming the existence of the entropy function and the stability condition, we prove the global existence and the asymptotic decay of the solution for small initial data in a suitable Sobolev space. Then, it is shown that the solution is well approximated, for large time, by a solution to the corresponding hyperbolic-parabolic coupled system. The first result is proved by deriving a priori estimates through the standard energy method. The spectral analysis with the aid of the a priori estimate gives the second result.  相似文献   

7.
Stability for basic system of equations of atmospheric motion   总被引:1,自引:1,他引:0  
The topological characteristics for the basic system of equations of atmospheric motion were analyzed with the help of method provided by stratification theory. It was proved that in the local rectangular coordinate system the basic system of equations of atmospheric motion is stable in infinitely differentiable function class. In the sense of local solution, the necessary and sufficient conditions by which the typical problem for determining solution is well posed were also given. Such problems as something about "speculating future from past" in atmospheric dynamics and how to amend the conditions for determining solution as well as the choice of underlying surface when involving the practical application were further discussed. It is also pointed out that under the usual conditions, three motion equations and continuity equation in the basic system of equations determine entirely the property of this system of equations.  相似文献   

8.
A new numerical integration scheme incorporating a predict-correct algorithm forsolving the nonlinear dynamic systems was proposed in this paper. A nonlinear dynamic systemgoverned by the equation v=F(v,t) was transformed into the form as v=Hv f(v,t). Thenonlinear part f(v,t) was then expanded by Taylor series and only the first-order term retained inthe polynomial. Utilizing the theory of linear differential equation and the precise time-integrationmethod, an exact solution for linearizing equation was obtained. In order to find the solution of theoriginal system, a third-order interpolation polynomial of v was used and an equivalent nonlinearordinary differential equation was regenerated. With a predicted solution as an initial value andan iteration scheme, a corrected result was achieved. Since the error caused by linearization couldbe eliminated in the correction process, the accuracy of calculation was improved greatly. Threeengineering scenarios were used to assess the accuracy and reliability of the proposed method andthe results were satisfactory.  相似文献   

9.
弹性力学的一种正交关系   总被引:8,自引:2,他引:8  
罗建辉  刘光栋 《力学学报》2003,35(4):489-492
在弹性力学求解新体系中,将对偶向量进行重新排序后,提出了一种新的对偶微分矩阵,对于有一个方向正交的各向异性材料的三维弹性力学问题发现了一种新的正交关系.将材料的正交方向取为z轴,证明了这种正交关系的成立.对于z方向材料正交的各向异性弹性力学问题,新的正交关系包含弹性力学求解新体系提出的正交关系。  相似文献   

10.
多圆孔圆板问题的数值解   总被引:3,自引:0,他引:3  
提出了一种求解多圆孔圆板问题的新方法。首先引入了基本特解,它由主要部分和附加部分组成。主要部分为带奇点无限平板的一个特殊弹性力学解,奇点取在内圆孔的中心处。附加部分为实心圆饭的一个特解。整个基本特解满足外圆周界为自由条件。文中把待求解取为特解系的形式,其中待定系数可用变分原理得出。最后给出了算例。  相似文献   

11.
We consider the problem on the motion of an isotropic elastic body occupying the half-space z ≥ 0 on whose boundary, along the half-plane x ≥ 0, the horizontal components of displacement are given, while the remaining part of the boundary is stress-free. We seek the solution by the method of integral Laplace transforms with respect to time t and Fourier transforms with respect to the coordinates x, y; the problem is reduced to a system of Wiener-Hopf equations, which can be solved by the methods of singular-integral equations and circulants. We invert the integral transforms and reduce the solution to the Smirnov-Sobolev form. We calculate the tangential stress intensity coefficients near the boundary z = 0, x = 0, |y| < ∞ of the half-plane. The circulant method for solving the Wiener-Hopf system was proposed in [1]. A static problem similar to that considered in the present paper was solved earlier. The Hilbert problem was reduced to a system of Fredholm integral equations in [2]. In the present paper, we solve the above problem by reducing the solution to quadratures and a quasiregular system of Fredholm integral equations. We give a numerical solution of the Fredholm equations and calculate the integrals for the tangential stress intensity coefficients.  相似文献   

12.
In existing studies, the well-known Hencky problem, i.e. the large deflection problem of axisymmetric deformation of a circular membrane subjected to uniformly distributed loads, has been analyzed generally on small-rotation-angle assumption and solved by using the common power series method. In fact, the problem studied and the method adopted may be effectively expanded to meet the needs of larger deformation. In this study, the classical Hencky problem was extended to the problem without small-rotation-angle assumption and resolved by using the perturbation idea combining with power series method. First, the governing differential equations used for the solution of stress and deflection in the perturbed system were established. Taking the load as a perturbation parameter, the stress and deflection were expanded with respect to the parameter. By substituting the expansions into the governing equations and corresponding boundary conditions, the perturbation solution of all levels were obtained, in which the zero-order perturbation solution exactly corresponds to the small-rotation-angle solution, i.e. the solution of the unperturbed system. The results indicate that if the perturbed and unperturbed systems as well as the corresponding differential equations may be distinguished, the perturbation method proposed in this study can be extended to solve other nonlinear differential equations, as long as the differential equation of unperturbed system may be obtained by letting a certain parameter be zero in the corresponding equation of perturbed system.  相似文献   

13.
The positivity of quadratic integrals involving variable coefficients and derivatives of any order is studied. The result is determined by the solution of an initial value problem for a system of first order nonlinear differential equations. The system is identified as the matrix Riccati differential equation in control theory. A complete conclusion is reached by considering the cases when the solution is bounded and when the solution is unbounded.  相似文献   

14.
An efficient numerical approach for the general thermomechanical problems was developed and it was tested for a two-dimensional thermoelasticity problem. The main idea of our numerical method is based on the reduction procedure of the original system of PDEs describing coupled thermomechanical behavior to a system of Differential Algebraic Equations (DAEs) where the stress-strain relationships are treated as algebraic equations. The resulting system of DAEs was then solved with a Backward Differentiation Formula (BDF) using a fully implicit algorithm. The described procedure was explained in detail, and its effectiveness was demonstrated on the solution of a transient uncoupled thermoelastic problem, for which an analytical solution is known, as well as on a fully coupled problem in the two-dimensional case.  相似文献   

15.
It is shown that for certain symmetric perturbations of gravitational potentials in the space, which admit two first integrals of motion, a circular solution of the unperturbed system with inclination different from 0 and π gives rise to a periodic solution of the reduced dynamics which is defined in the quotient space of the action by the subgroup that fixes the symmetry axis. In the planar case, if we assume that the system admits a first integral of motion which is also symmetric with respect to the origin, then it is shown that each circular solution of the unperturbed problem gives rise to a periodic solution of the perturbed system.  相似文献   

16.
We consider the static elasticity problem for a quarter space with zero displacements on one of its surfaces and with given stresses on the other. The method for solving this problem is based on the use of newunknown functions in the formof a linear combination of the desired displacements, which reduces the system of three Lamé equations to two equations to be solved simultaneously and one equation to be solved separately. The exact solution of this problem was obtained earlier by the same method [1]. But it was shown in [2] that such a solution is exact only under certain restrictions on the given functions. In the present paper, the solution of this problem is constructed without restrictions on the given functions, which necessitates solving a one-dimensional integro-differential equation; this can be done approximately by the orthogonal polynomial method. We present numerical results obtained on the basis of our solution.  相似文献   

17.
The present paper describes an improved version of the elliptic averaging method that provides a highly accurate periodic solution of a non-linear system based on the single-degree-of-freedom Duffing oscillator with a snap-through spring. In the proposed method, the sum of the Jacobian elliptic delta and zeta functions is used as the generating solution of the averaging method. The proposed method can be used to obtain the non-odd-order solution, which includes both even- and odd-order harmonic components. The stability analysis for the approximate solution obtained by the present method is also discussed. The stability of the solution is determined from the characteristic multiplier based on Floquet’s theorem. The proposed method is applied to a fundamental oscillator in a non-linear system. The numerical results demonstrate that the proposed method is very effective for analyzing the periodic solution of half-swing mode for systems based on Duffing oscillators with a snap-through spring.  相似文献   

18.
In [1] the problem of optimal profiling of the supersonic portion of a plane or axisymmetric nozzle for nonequilibrium flow is reduced to a boundary-value problem for a hyperbolic system of equations which includes the flow equations and the equations for the Lagrange multipliers. In view of the complexity of the solution of that system, the present paper presents an analogous study based on the one-dimensional formulation. The solution is illustrated by examples. It is noted that a similar solution undertaken in [2] is in error.  相似文献   

19.
WKBJ近似保辛吗?   总被引:3,自引:1,他引:2  
WKBJ短波近似是最常用的有效求解方法之一。保守体系的微分方程可用Hamilton体系的方法描述,其特点是保辛。保辛给出保守体系结构最重要的特性。但WKBJ短波近似却未曾考虑保辛的问题。本文给出验证近似解保辛的条件,并指出WKBJ近似难于保辛。然后给出正则变换的摄动保辛方法。数值例题展示了提出的保辛算法的有效性。  相似文献   

20.
现有参激系统的动力稳定性问题研究主要集中在主不稳定区域上。为获得组合不稳定区域,基于Floquet方法,采用Bolotin方法在不同周期数下设解形式,结合特征值分析法得到确定多自由度参激系统动力不稳定区域的数值解法。对一个两自由度受周期轴向力的旋转轴系算例的稳定性分析,发现通过增加设解近似项数可获得高阶不稳定区域,且各阶不稳定区域边界随近似次数的增加逐渐趋于稳定,此外,增大阻尼可使各不稳定区域边界变得更加平滑。本文方法可用于一般多自由度周期参激阻尼系统,是一种简明易操作的直接数值解法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号