首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we give the conditions on the pair (ω 1, ω 2) which ensures the boundedness of the anisotropic maximal operator and anisotropic singular integral operators from one generalized Morrey space Mp,w1 \mathcal{M}_{p,\omega _1 } to another Mp,w2 \mathcal{M}_{p,\omega _2 }, 1 < p < g8, and from the space M1,w1 \mathcal{M}_{1,\omega _1 } to the weak space WM1,w2 W\mathcal{M}_{1,\omega _2 }.  相似文献   

2.
Let ω,ω 0 be appropriate weight functions and q∈[1,∞]. We introduce the wave-front set, WFFLq(w)(f)\mathrm{WF}_{\mathcal{F}L^{q}_{(\omega)}}(f) of f ? S¢f\in \mathcal{S}' with respect to weighted Fourier Lebesgue space FLq(w)\mathcal{F}L^{q}_{(\omega )}. We prove that usual mapping properties for pseudo-differential operators Op (a) with symbols a in S(w0)r,0S^{(\omega _{0})}_{\rho ,0} hold for such wave-front sets. Especially we prove that
$[b]{lll}\mathrm{WF}_{\mathcal{F}L^q_{(\omega /\omega _0)}}(\operatorname {Op}(a)f)&\subseteq&\mathrm{WF}_{\mathcal{F}L^q_{(\omega )}}(f)\\[6pt]&\subseteq&\mathrm{WF}_{\mathcal{F}L^q_{(\omega/\omega _0)}}(\operatorname {Op}(a)f)\cup \operatorname {Char}(a).$\begin{array}[b]{lll}\mathrm{WF}_{\mathcal{F}L^q_{(\omega /\omega _0)}}(\operatorname {Op}(a)f)&\subseteq&\mathrm{WF}_{\mathcal{F}L^q_{(\omega )}}(f)\\[6pt]&\subseteq&\mathrm{WF}_{\mathcal{F}L^q_{(\omega/\omega _0)}}(\operatorname {Op}(a)f)\cup \operatorname {Char}(a).\end{array}  相似文献   

3.
Let P be a linear partial differential operator with constant coefficients. For a weight function ω and an open subset Ω of \mathbbRN{\mathbb{R}^N} , the class EP,{w}(W){\mathcal{E}_{P,\{\omega\}}(\Omega)} of Roumieu type involving the successive iterates of the operator P is considered. The completeness of this space is characterized in terms of the hypoellipticity of P. Results of Komatsu and Newberger-Zielezny are extended. Moreover, for weights ω satisfying a certain growth condition, this class coincides with a class of ultradifferentiable functions if and only if P is elliptic. These results remain true in the Beurling case EP,(w)(W){\mathcal{E}_{P,(\omega)}(\Omega)}.  相似文献   

4.
Milo? S. Kurili? 《Order》2012,29(1):119-129
A family P ì [w]w{\mathcal P} \subset [\omega]^\omega is called positive iff it is the union of some infinite upper set in the Boolean algebra P(ω)/Fin. For example, if I ì P(w){\mathcal I} \subset P(\omega) is an ideal containing the ideal Fin of finite subsets of ω, then P(w) \IP(\omega) \setminus {\mathcal I} is a positive family and the set Dense(\mathbb Q)\mbox{Dense}({\mathbb Q}) of dense subsets of the rational line is a positive family which is not the complement of some ideal on P(\mathbb Q)P({\mathbb Q}). We prove that, for a positive family P{\mathcal P}, the order types of maximal chains in the complete lattice áP è{?}, ì ?\langle {\mathcal P} \cup \{\emptyset\}, \subset \rangle are exactly the order types of compact nowhere dense subsets of the real line having the minimum non-isolated. Also we compare this result with the corresponding results concerning maximal chains in the Boolean algebras P(ω) and Intalg[0,1)\mathbb R\mbox{Intalg}[0,1)_{{\mathbb R}} and the poset E(\mathbb Q)E({\mathbb Q}), where E(\mathbb Q)E({\mathbb Q}) is the set of elementary submodels of the rational line.  相似文献   

5.
We investigate splitting number and reaping number for the structure (ω) ω of infinite partitions of ω. We prove that \mathfrakrdnon(M),non(N),\mathfrakd{\mathfrak{r}_{d}\leq\mathsf{non}(\mathcal{M}),\mathsf{non}(\mathcal{N}),\mathfrak{d}} and \mathfraksd 3 \mathfrakb{\mathfrak{s}_{d}\geq\mathfrak{b}} . We also show the consistency results ${\mathfrak{r}_{d} > \mathfrak{b}, \mathfrak{s}_{d} < \mathfrak{d}, \mathfrak{s}_{d} < \mathfrak{r}, \mathfrak{r}_{d} < \mathsf{add}(\mathcal{M})}${\mathfrak{r}_{d} > \mathfrak{b}, \mathfrak{s}_{d} < \mathfrak{d}, \mathfrak{s}_{d} < \mathfrak{r}, \mathfrak{r}_{d} < \mathsf{add}(\mathcal{M})} and ${\mathfrak{s}_{d} > \mathsf{cof}(\mathcal{M})}${\mathfrak{s}_{d} > \mathsf{cof}(\mathcal{M})} . To prove the consistency \mathfrakrd < add(M){\mathfrak{r}_{d} < \mathsf{add}(\mathcal{M})} and \mathfraksd < cof(M){\mathfrak{s}_{d} < \mathsf{cof}(\mathcal{M})} we introduce new cardinal invariants \mathfrakrpair{\mathfrak{r}_{pair}} and \mathfrakspair{\mathfrak{s}_{pair}} . We also study the relation between \mathfrakrpair, \mathfrakspair{\mathfrak{r}_{pair}, \mathfrak{s}_{pair}} and other cardinal invariants. We show that cov(M),cov(N) £ \mathfrakrpair £ \mathfraksd,\mathfrakr{\mathsf{cov}(\mathcal{M}),\mathsf{cov}(\mathcal{N})\leq\mathfrak{r}_{pair}\leq\mathfrak{s}_{d},\mathfrak{r}} and \mathfraks £ \mathfrakspairnon(M),non(N){\mathfrak{s}\leq\mathfrak{s}_{pair}\leq\mathsf{non}(\mathcal{M}),\mathsf{non}(\mathcal{N})} .  相似文献   

6.
In this paper, we mainly study polynomial generalized Vekua-type equation _boxclose)w=0{p(\mathcal{D})w=0} and polynomial generalized Bers–Vekua equation p(D)w=0{p(\mathcal{\underline{D}})w=0} defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}} where D{\mathcal{D}} and D{\mathcal{\underline{D}}} mean generalized Vekua-type operator and generalized Bers–Vekua operator, respectively. Using Clifford algebra, we obtain the Fischer-type decomposition theorems for the solutions to these equations including (D-l)kw=0,(D-l)kw=0(k ? \mathbbN){\left(\mathcal{D}-\lambda\right)^{k}w=0,\left(\mathcal {\underline{D}}-\lambda\right)^{k}w=0\left(k\in\mathbb{N}\right)} with complex parameter λ as special cases, which derive the Almansi-type decomposition theorems for iterated generalized Bers–Vekua equation and polynomial generalized Cauchy–Riemann equation defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}}. Making use of the decomposition theorems we give the solutions to polynomial generalized Bers–Vekua equation defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}} under some conditions. Furthermore we discuss inhomogeneous polynomial generalized Bers–Vekua equation p(D)w=v{p(\mathcal{\underline{D}})w=v} defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}}, and develop the structure of the solutions to inhomogeneous polynomial generalized Bers–Vekua equation p(D)w=v{p(\mathcal{\underline{D}})w=v} defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}}.  相似文献   

7.
Let F{\mathcal{F}} be a singular Riemannian foliation on a compact Riemannian manifold M. By successive blow-ups along the strata of F{\mathcal{F}} we construct a regular Riemannian foliation [^(F)]{\hat{\mathcal{F}}} on a compact Riemannian manifold [^(M)]{\hat{M}} and a desingularization map [^(r)]:[^(M)]? M{\hat{\rho}:\hat{M}\rightarrow M} that projects leaves of [^(F)]{\hat{\mathcal{F}}} into leaves of F{\mathcal{F}}. This result generalizes a previous result due to Molino for the particular case of a singular Riemannian foliation whose leaves were the closure of leaves of a regular Riemannian foliation. We also prove that, if the leaves of F{\mathcal{F}} are compact, then, for each small ${\epsilon >0 }${\epsilon >0 }, we can find [^(M)]{\hat{M}} and [^(F)]{\hat{\mathcal{F}}} so that the desingularization map induces an e{\epsilon}-isometry between M/F{M/\mathcal{F}} and [^(M)]/[^(F)]{\hat{M}/\hat{\mathcal{F}}}. This implies in particular that the space of leaves M/F{M/\mathcal{F}} is a Gromov-Hausdorff limit of a sequence of Riemannian orbifolds {([^(M)]n/[^(F)]n)}{\{(\hat{M}_{n}/\hat{\mathcal{F}}_{n})\}}.  相似文献   

8.
We consider a singular perturbation of the one-dimensional Cahn–Hilliard equation subject to periodic boundary conditions. We construct a family of exponential attractors ${\{{\mathcal M}_\epsilon\}, \epsilon\geq 0}We consider a singular perturbation of the one-dimensional Cahn–Hilliard equation subject to periodic boundary conditions. We construct a family of exponential attractors {Me}, e 3 0{\{{\mathcal M}_\epsilon\}, \epsilon\geq 0} being the perturbation parameter, such that the map e? Me{\epsilon \mapsto {\mathcal M}_\epsilon} is H?lder continuous. Besides, the continuity at e = 0{\epsilon=0} is obtained with respect to a metric independent of e.{\epsilon.} Continuity properties of global attractors and inertial manifolds are also examined.  相似文献   

9.
In this paper we present new structural information about the multiplier algebra M (A ){\mathcal M (\mathcal A )} of a σ-unital purely infinite simple C*-algebra A{\mathcal {A}}, by characterizing the positive elements A ? M (A ){A\in \mathcal M (\mathcal A )} that are strict sums of projections belonging to A{\mathcal A } . If A ? A{A\not\in \mathcal {A}} and A itself is not a projection, then the necessary and sufficient condition for A to be a strict sum of projections belonging to A{\mathcal {A} } is that ${\|A\| >1 }${\|A\| >1 } and that the essential norm ||A||ess 3 1{\|A\|_{ess} \geq 1}. Based on a generalization of the Perera–Rordam weak divisibility of separable simple C*-algebras of real rank zero to all σ-unital simple C*-algebras of real rank zero, we show that every positive element of A{\mathcal {A}} with norm >1 can be approximated by finite sums of projections. Based on block tri-diagonal approximations, we decompose any positive element A ? M (A ){A\in \mathcal M (\mathcal {A} )} with ${\| A\| >1 }${\| A\| >1 } and || A||ess 3 1{\| A\|_{ess} \geq 1} into a strictly converging sum of positive elements in A{\mathcal A} with norm >1.  相似文献   

10.
For a resistance form ${(X, \mathcal{D}(\varepsilon),\varepsilon)}For a resistance form (X, D(e),e){(X, \mathcal{D}(\varepsilon),\varepsilon)} and a point x0 ? X{x_0 \in X} as boundary, on the space X0:=X \{x0}{X_0:=X {\setminus}\{x_0\}} we consider the Dirichlet space Dx0:={f ? D(e) | f(x0)=0}{\mathcal{D}_{x_0}:=\{f\in\mathcal{D}(\varepsilon)\, |\, f(x_0)=0\}} and we develop a good potential theory. For any finely open subset D of X 0 we consider a localized resistance form (DX0 \ D,eD{\mathcal{D}_{X_0 {\setminus} D},\varepsilon_{D}}) where DX0 \ D:={f ? Dx0 | f=0{\mathcal{D}_{X_0 {\setminus} D}:=\{f\in\mathcal{D}_{x_0}\, |\, f=0} on X0 \ D}, eD(f,g):=e(f,g){X_0 {\setminus} D\},\, \varepsilon_D(f,g):=\varepsilon(f,g)} for all f,g ? DX0 \ D{f,g\in\mathcal{D}_{X_0 {\setminus} D}}. The main result is the equivalence between the local property of the resistance form and the sheaf property for the excessive elements on finely open sets.  相似文献   

11.
We consider generalized Morrey type spaces Mp( ·),q( ·),w( ·)( W) {\mathcal{M}^{p\left( \cdot \right),\theta \left( \cdot \right),\omega \left( \cdot \right)}}\left( \Omega \right) with variable exponents p(x), θ(r) and a general function ω(x, r) defining a Morrey type norm. In the case of bounded sets W ì \mathbbRn \Omega \subset {\mathbb{R}^n} , we prove the boundedness of the Hardy–Littlewood maximal operator and Calderón–Zygmund singular integral operators with standard kernel. We prove a Sobolev–Adams type embedding theorem Mp( ·),q1( ·),w1( ·)( W) ? Mq( ·),q2( ·),w2( ·)( W) {\mathcal{M}^{p\left( \cdot \right),{\theta_1}\left( \cdot \right),{\omega_1}\left( \cdot \right)}}\left( \Omega \right) \to {\mathcal{M}^{q\left( \cdot \right),{\theta_2}\left( \cdot \right),{\omega_2}\left( \cdot \right)}}\left( \Omega \right) for the potential type operator I α(·) of variable order. In all the cases, we do not impose any monotonicity type conditions on ω(x, r) with respect to r. Bibliography: 40 titles.  相似文献   

12.
Let ${\mathbb{A}}Let \mathbbA{\mathbb{A}} be a universal algebra of signature Ω, and let I{\mathcal{I}} be an ideal in the Boolean algebra P\mathbbA{\mathcal{P}_{\mathbb{A}}} of all subsets of \mathbbA{\mathbb{A}} . We say that I{\mathcal{I}} is an Ω-ideal if I{\mathcal{I}} contains all finite subsets of \mathbbA{\mathbb{A}} and f(An) ? I{f(A^{n}) \in \mathcal{I}} for every n-ary operation f ? W{f \in \Omega} and every A ? I{A \in \mathcal{I}} . We prove that there are 22à0{2^{2^{\aleph_0}}} Ω-ideals in P\mathbbA{\mathcal{P}_{\mathbb{A}}} provided that \mathbbA{\mathbb{A}} is countably infinite and Ω is countable.  相似文献   

13.
Let j{\varphi} be an analytic self-map of the unit disk \mathbbD{\mathbb{D}}, H(\mathbbD){H(\mathbb{D})} the space of analytic functions on \mathbbD{\mathbb{D}} and g ? H(\mathbbD){g \in H(\mathbb{D})}. The boundedness and compactness of the operator DCj : H ? Z{DC_\varphi : H^\infty \rightarrow { \mathcal Z}} are investigated in this paper.  相似文献   

14.
Let x(t),t ? [ 0,1 ] \xi (t),t \in \left[ {0,1} \right] , be a jump Lévy process. By Px {\mathcal{P}_\xi } we denote the law of in the Skorokhod space \mathbbD {\mathbb{D}} [0, 1]. Under some nondegeneracy condition on the Lévy measure Λ of the process, we construct a group of Px {\mathcal{P}_\xi } -preserving transformations of the space \mathbbD {\mathbb{D}} [0, 1]. Bibliography: 10 titles.  相似文献   

15.
Let n and r be positive integers. Suppose that a family satisfies F1∩···∩Fr ≠∅ for all F1, . . .,Fr ∈ and . We prove that there exists ε=ε(r) >0 such that holds for 1/2≤w≤1/2+ε if r≥13.  相似文献   

16.
In this paper we develop an abstract setup for hamiltonian group actions as follows: Starting with a continuous 2-cochain ω on a Lie algebra \mathfrak h{\mathfrak h} with values in an \mathfrak h{\mathfrak h}-module V, we associate subalgebras \mathfrak sp(\mathfrak h,w) ê \mathfrak ham(\mathfrak h,w){\mathfrak {sp}(\mathfrak h,\omega) \supseteq \mathfrak {ham}(\mathfrak h,\omega)} of symplectic, resp., hamiltonian elements. Then \mathfrak ham(\mathfrak h,w){\mathfrak {ham}(\mathfrak h,\omega)} has a natural central extension which in turn is contained in a larger abelian extension of \mathfrak sp(\mathfrak h,w){\mathfrak {sp}(\mathfrak h,\omega)}. In this setting, we study linear actions of a Lie group G on V which are compatible with a homomorphism \mathfrak g ? \mathfrak ham(\mathfrak h,w){\mathfrak g \to \mathfrak {ham}(\mathfrak h,\omega)}, i.e., abstract hamiltonian actions, corresponding central and abelian extensions of G and momentum maps J : \mathfrak g ? V{J : \mathfrak g \to V}.  相似文献   

17.
We study the spectrum σ(M) of the multipliers M which commute with the translations on weighted spaces ${L_{\omega}^{2}(\mathbb{R})}We study the spectrum σ(M) of the multipliers M which commute with the translations on weighted spaces Lw2(\mathbbR){L_{\omega}^{2}(\mathbb{R})} For operators M in the algebra generated by the convolutions with f ? Cc(\mathbb R){\phi \in {C_c(\mathbb {R})}} we show that [`(m(W))] = s(M){\overline{\mu(\Omega)} = \sigma(M)}, where the set Ω is determined by the spectrum of the shift S and μ is the symbol of M. For the general multipliers M we establish that [`(m(W))]{\overline{\mu(\Omega)}} is included in σ(M). A generalization of these results is given for the weighted spaces L2w(\mathbb Rk){L^2_{\omega}(\mathbb {R}^{k})} where the weight ω has a special form.  相似文献   

18.
A C*-symbolic dynamical system ${(\mathcal{A}, \rho, \Sigma)}A C*-symbolic dynamical system (A, r, S){(\mathcal{A}, \rho, \Sigma)} consists of a unital C*-algebra A{\mathcal{A}} and a finite family { ra }a ? S{\{ \rho_\alpha \}_{\alpha \in \Sigma}} of endomorphisms ρ α of A{\mathcal{A}} indexed by symbols α of Σ satisfying some conditions. The endomorphisms ra, a ? S{\rho_\alpha, \alpha \in \Sigma } yield both a subshift Λ and a C*-algebra of a Hilbert C*-bimodule. The obtained C*-algebra is regarded as a crossed product of A{\mathcal{A}} by the subshift Λ. We will study simplicity condition of these C*-algebras. Some examples such as irrational rotation Cuntz–Krieger algebras will be studied.  相似文献   

19.
Let g be a negatively curved Riemannian metric of a closed C manifold M of dimension at least three. Let L λ be a C one-parameter convex superlinear Lagrangian on TM such that L0(v) = \frac12 g(v, v){L_0(v)= \frac{1}{2} g(v, v)} for any vTM. We denote by jl{\varphi^\lambda} the restriction of the Euler-Lagrange flow of L λ on the \frac12{\frac{1}{2}} -energy level. If λ is small enough then the flow jl{\varphi^\lambda} is Anosov. In this paper we study the geometric consequences of different assumptions about the regularity of the Anosov distributions of jl{\varphi^\lambda} . For example, in the case that the initial Riemannian metric g is real hyperbolic, we prove that for λ small, jl{\varphi^\lambda} has C 3 weak stable and weak unstable distributions if and only if jl{\varphi^\lambda} is C orbit equivalent to the geodesic flow of g.  相似文献   

20.
Let ${\mathcal {H}_{1}}Let H1{\mathcal {H}_{1}} and H2{\mathcal {H}_{2}} be separable Hilbert spaces, and let A ? B(H1), B ? B(H2){A \in \mathcal {B}(\mathcal {H}_{1}),\, B \in \mathcal {B}(\mathcal {H}_{2})} and C ? B(H2H1){C \in \mathcal {B}(\mathcal {H}_{2},\, \mathcal {H}_{1})} be given operators. A necessary and sufficient condition is given for ${\left(\begin{smallmatrix}A &\enspace C\\ X &\enspace B \end{smallmatrix}\right)}${\left(\begin{smallmatrix}A &\enspace C\\ X &\enspace B \end{smallmatrix}\right)} to be a right (left) invertible operator for some X ? B(H1H2){X \in \mathcal {B}(\mathcal {H}_{1},\, \mathcal {H}_{2})}. Furthermore, some related results are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号