首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Han QJ  Wu HL  Cai CB  Xu L  Yu RQ 《Analytica chimica acta》2008,612(2):121-125
An improved method based on an ensemble of Monte Carlo uninformative variable elimination (EMCUVE) is presented for wavelength selection in multivariate calibration of spectral data. The proposed algorithm introduces Monte Carlo (MC) strategy to uninformative variable elimination-PLS (UVE-PLS) instead of leave-one-out strategy for estimating the contributions of each wavelength variable in the PLS model. In EMCUVE wavelength variables are evaluated by different Monte Carlo uninformative variable elimination (MCUVE) models. Moreover, a fusion of MCUVE and the vote rule can obtain an improvement over the original uninformative variable elimination method. Results obtained from simulated data and real data sets demonstrate that EMCUVE can properly carry out wavelength selection in the course of data analysis and improve predictive ability for multivariate calibration model.  相似文献   

2.
The calibration performance of partial least squares regression for one response (PLS1) can be improved by eliminating uninformative variables. Many variable-reduction methods are based on so-called predictor-variable properties or predictive properties, which are functions of various PLS-model parameters, and which may change during the steps of the variable-reduction process. Recently, a new predictive-property-ranked variable reduction method with final complexity adapted models, denoted as PPRVR-FCAM or simply FCAM, was introduced. It is a backward variable elimination method applied on the predictive-property-ranked variables. The variable number is first reduced, with constant PLS1 model complexity A, until A variables remain, followed by a further decrease in PLS complexity, allowing the final selection of small numbers of variables.  相似文献   

3.
The calibration performance of partial least squares for one response variable (PLS1) can be improved by elimination of uninformative variables. Many methods are based on so-called predictive variable properties, which are functions of various PLS-model parameters, and which may change during the variable reduction process. In these methods variable reduction is made on the variables ranked in descending order for a given variable property. The methods start with full spectrum modelling. Iteratively, until a specified number of remaining variables is reached, the variable with the smallest property value is eliminated; a new PLS model is calculated, followed by a renewed ranking of the variables. The Stepwise Variable Reduction methods using Predictive-Property-Ranked Variables are denoted as SVR-PPRV. In the existing SVR-PPRV methods the PLS model complexity is kept constant during the variable reduction process. In this study, three new SVR-PPRV methods are proposed, in which a possibility for decreasing the PLS model complexity during the variable reduction process is build in. Therefore we denote our methods as PPRVR-CAM methods (Predictive-Property-Ranked Variable Reduction with Complexity Adapted Models). The selective and predictive abilities of the new methods are investigated and tested, using the absolute PLS regression coefficients as predictive property. They were compared with two modifications of existing SVR-PPRV methods (with constant PLS model complexity) and with two reference methods: uninformative variable elimination followed by either a genetic algorithm for PLS (UVE-GA-PLS) or an interval PLS (UVE-iPLS). The performance of the methods is investigated in conjunction with two data sets from near-infrared sources (NIR) and one simulated set. The selective and predictive performances of the variable reduction methods are compared statistically using the Wilcoxon signed rank test. The three newly developed PPRVR-CAM methods were able to retain significantly smaller numbers of informative variables than the existing SVR-PPRV, UVE-GA-PLS and UVE-iPLS methods without loss of prediction ability. Contrary to UVE-GA-PLS and UVE-iPLS, there is no variability in the number of retained variables in each PPRV(R) method. Renewed variable ranking, after deletion of a variable, followed by remodelling, combined with the possibility to decrease the PLS model complexity, is beneficial. A preferred PPRVR-CAM method is proposed.  相似文献   

4.
This study proposes an analytical method for the simultaneous near infrared (NIR) spectrometric determination of palmitic, oleic, linoleic and linolenic acids in sea buckthorn seed oil. For this purpose, four different combinations of multivariate calibration methods and variable selections were evaluated: partial least squares (PLS) with full spectrum; PLS with uninformative variables elimination (UVE); PLS with competitive adaptive reweighted sampling (CARS); and multiple linear regression (MLR) with uninformative variable elimination combined with successive projections algorithm (UVE-SPA). An independent set of samples was employed to evaluate the performance of the resulting models. The UVE-SPA-MLR model developed with a few spectral variables provided the best results for each parameter. The values of relative errors of prediction (REP) from the UVE-SPA-MLR model for palmitic, oleic, linoleic and linolenic acids are 1.77%, 1.20%, 1.02% and 1.40%, respectively. These results indicate that this method is a feasible and fast method for the determination of the fatty acid content of sea buckthorn seed oil.  相似文献   

5.
This paper proposes an analytical method for simultaneous near-infrared (NIR) spectrometric determination of α-linolenic and linoleic acid in eight types of edible vegetable oils and their blending. For this purpose, a combination of spectral wavelength selection by wavelet transform (WT) and elimination of uninformative variables (UVE) was proposed to obtain simple partial least square (PLS) models based on a small subset of wavelengths. WT was firstly utilized to compress full NIR spectra which contain 1413 redundant variables, and 42 wavelet approximate coefficients were obtained. UVE was then carried out to further select the informative variables. Finally, 27 and 19 wavelet approximate coefficients were selected by UVE for α-linolenic and linoleic acid, respectively. The selected variables were used as inputs of PLS model. Due to original spectra were compressed, and irrelevant variables were eliminated, more parsimonious and efficient model based on WT-UVE was obtained compared with the conventional PLS model with full spectra data. The coefficient of determination (r2) and root mean square error prediction set (RMSEP) for prediction set were 0.9345 and 0.0123 for α-linolenic acid prediction by WT-UVE-PLS model. The r2 and RMSEP were 0.9054, 0.0437 for linoleic acid prediction. The good performance showed a potential application using WT-UVE to select NIR effective variables. WT-UVE can both speed up the calculation and improve the predicted results. The results indicated that it was feasible to fast determine α-linolenic acid and linoleic acid content in edible oils using NIR spectroscopy.  相似文献   

6.
Nowadays, with a high dimensionality of dataset, it faces a great challenge in the creation of effective methods which can select an optimal variables subset. In this study, a strategy that considers the possible interaction effect among variables through random combinations was proposed, called iteratively retaining informative variables (IRIV). Moreover, the variables are classified into four categories as strongly informative, weakly informative, uninformative and interfering variables. On this basis, IRIV retains both the strongly and weakly informative variables in every iterative round until no uninformative and interfering variables exist. Three datasets were employed to investigate the performance of IRIV coupled with partial least squares (PLS). The results show that IRIV is a good alternative for variable selection strategy when compared with three outstanding and frequently used variable selection methods such as genetic algorithm-PLS, Monte Carlo uninformative variable elimination by PLS (MC-UVE-PLS) and competitive adaptive reweighted sampling (CARS). The MATLAB source code of IRIV can be freely downloaded for academy research at the website: http://code.google.com/p/multivariate-calibration/downloads/list.  相似文献   

7.
In this paper, we proposed a wavelength selection method based on random decision particle swarm optimization with attractor for near‐infrared (NIR) spectra quantitative analysis. The proposed method was incorporated with partial least square (PLS) to construct a prediction model. The proposed method chooses the current own optimal or the current global optimal to calculate the attractor. Then the particle updates its flight velocity by the attractor, and the particle state is updated by the random decision with the new velocity. Moreover, the root‐mean‐square error of cross‐validation is adopted as the fitness function for the proposed method. In order to demonstrate the usefulness of the proposed method, PLS with all wavelengths, uninformative variable elimination by PLS, elastic net, genetic algorithm combined with PLS, the discrete particle swarm optimization combined with PLS, the modified particle swarm optimization combined with PLS, the neighboring particle swarm optimization combined with PLS, and the proposed method are used for building the components quantitative analysis models of NIR spectral datasets, and the effectiveness of these models is compared. Two application studies are presented, which involve NIR data obtained from an experiment of meat content determination using NIR and a combustion procedure. Results verify that the proposed method has higher predictive ability for NIR spectral data and the number of selected wavelengths is less. The proposed method has faster convergence speed and could overcome the premature convergence problem. Furthermore, although improving the prediction precision may sacrifice the model complexity under a certain extent, the proposed method is overfitted slightly. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A new hybrid algorithm is proposed to eliminate the varying background and noise simultaneously for multivariate calibration of near infrared (NIR) spectral signals. The method is based on the use of multi-resolution, which is one of the main advantages provided by wavelet transform. The signals are firstly split into different frequency components, which keep the same data points of the original signals. In conjunction with a modified uninformative variable elimination (mUVE) criterion, the new method can be used to remove the low-frequency varying background and the high-frequency noise simultaneously. The method is successfully applied to simulated spectral data set and experimental NIR spectral data, resulting in more parsimonious multivariate models with higher precision. In addition, the proposed strategy can be applied to other spectral signals as well.  相似文献   

9.
A PLS model for prediction of somatic cell count (SCC) based on near-infrared (NIR) spectra of unhomogenized milk is presented in the study. Samples of raw milk were collected from cows in the early lactation period (from 7th to 29th day after parturition). The NIR spectra were measured in the region 400–1100 nm. As reference method a fluoro-opto-electronic method was applied. Different preprocessing methods were investigated. The robust version of PLS regression was applied to handle outliers present in the dataset and the uninformative variable elimination–partial least squares (UVE–PLS) method was used to eliminate uninformative variables. The final model is acceptable for prediction of SCC in raw milk.  相似文献   

10.
Recently we have proposed a new variable selection algorithm, based on clustering of variable concept (CLoVA) in classification problem. With the same idea, this new concept has been applied to a regression problem and then the obtained results have been compared with conventional variable selection strategies for PLS. The basic idea behind the clustering of variable is that, the instrument channels are clustered into different clusters via clustering algorithms. Then, the spectral data of each cluster are subjected to PLS regression. Different real data sets (Cargill corn, Biscuit dough, ACE QSAR, Soy, and Tablet) have been used to evaluate the influence of the clustering of variables on the prediction performances of PLS. Almost in the all cases, the statistical parameter especially in prediction error shows the superiority of CLoVA-PLS respect to other variable selection strategies. Finally the synergy clustering of variable (sCLoVA-PLS), which is used the combination of cluster, has been proposed as an efficient and modification of CLoVA algorithm. The obtained statistical parameter indicates that variable clustering can split useful part from redundant ones, and then based on informative cluster; stable model can be reached.  相似文献   

11.
This paper presents a preliminary study in building discriminant models from solid-state NMR spectrometry data to detect the presence of acetaminophen in over-the-counter pharmaceutical formulations. The dataset, containing 11 spectra of pure substances and 21 spectra of various formulations, was processed by partial least squares discriminant analysis (PLS-DA). The model found coped with the discrimination, and its quality parameters were acceptable. It was found that standard normal variate preprocessing had almost no influence on unsupervised investigation of the dataset. The influence of variable selection with the uninformative variable elimination by PLS method was studied, reducing the dataset from 7601 variables to around 300 informative variables, but not improving the model performance. The results showed the possibility to construct well-working PLS-DA models from such small datasets without a full experimental design.  相似文献   

12.
Near-infrared reflectance spectroscopy (NIRS) is often applied when a rapid quantification of major components in feed is required. This technique is preferred over the other analytical techniques due to the relatively few requirements concerning sample preparations, high efficiency and low costs of the analysis. In this study, NIRS was used to control the content of crude protein, fat and fibre in extracted rapeseed meal which was produced in the local industrial crushing plant. For modelling the NIR data, the partial least squares approach (PLS) was used. The satisfactory prediction errors were equal to 1.12, 0.13 and 0.45 (expressed in percentages referring to dry mass) for crude protein, fat and fibre content, respectively. To point out the key spectral regions which are important for modelling, uninformative variable elimination PLS, PLS with jackknife-based variable elimination, PLS with bootstrap-based variable elimination and the orthogonal partial least squares approach were compared for the data studied. They enabled an easier interpretation of the calibration models in terms of absorption bands and led to similar predictions for test samples compared to the initial models.  相似文献   

13.
Variable (wavelength or feature) selection techniques have become a critical step for the analysis of datasets with high number of variables and relatively few samples. In this study, a novel variable selection strategy, variable combination population analysis (VCPA), was proposed. This strategy consists of two crucial procedures. First, the exponentially decreasing function (EDF), which is the simple and effective principle of ‘survival of the fittest’ from Darwin’s natural evolution theory, is employed to determine the number of variables to keep and continuously shrink the variable space. Second, in each EDF run, binary matrix sampling (BMS) strategy that gives each variable the same chance to be selected and generates different variable combinations, is used to produce a population of subsets to construct a population of sub-models. Then, model population analysis (MPA) is employed to find the variable subsets with the lower root mean squares error of cross validation (RMSECV). The frequency of each variable appearing in the best 10% sub-models is computed. The higher the frequency is, the more important the variable is. The performance of the proposed procedure was investigated using three real NIR datasets. The results indicate that VCPA is a good variable selection strategy when compared with four high performing variable selection methods: genetic algorithm–partial least squares (GA–PLS), Monte Carlo uninformative variable elimination by PLS (MC-UVE-PLS), competitive adaptive reweighted sampling (CARS) and iteratively retains informative variables (IRIV). The MATLAB source code of VCPA is available for academic research on the website: http://www.mathworks.com/matlabcentral/fileexchange/authors/498750.  相似文献   

14.
By employing the simple but effective principle ‘survival of the fittest’ on which Darwin's Evolution Theory is based, a novel strategy for selecting an optimal combination of key wavelengths of multi-component spectral data, named competitive adaptive reweighted sampling (CARS), is developed. Key wavelengths are defined as the wavelengths with large absolute coefficients in a multivariate linear regression model, such as partial least squares (PLS). In the present work, the absolute values of regression coefficients of PLS model are used as an index for evaluating the importance of each wavelength. Then, based on the importance level of each wavelength, CARS sequentially selects N subsets of wavelengths from N Monte Carlo (MC) sampling runs in an iterative and competitive manner. In each sampling run, a fixed ratio (e.g. 80%) of samples is first randomly selected to establish a calibration model. Next, based on the regression coefficients, a two-step procedure including exponentially decreasing function (EDF) based enforced wavelength selection and adaptive reweighted sampling (ARS) based competitive wavelength selection is adopted to select the key wavelengths. Finally, cross validation (CV) is applied to choose the subset with the lowest root mean square error of CV (RMSECV). The performance of the proposed procedure is evaluated using one simulated dataset together with one near infrared dataset of two properties. The results reveal an outstanding characteristic of CARS that it can usually locate an optimal combination of some key wavelengths which are interpretable to the chemical property of interest. Additionally, our study shows that better prediction is obtained by CARS when compared to full spectrum PLS modeling, Monte Carlo uninformative variable elimination (MC-UVE) and moving window partial least squares regression (MWPLSR).  相似文献   

15.
In this work the Successive Projection Algorithm is presented for intervals selection in N-PLS for three-way data modeling. The proposed algorithm combines noise-reduction properties of PLS with the possibility of discarding uninformative variables in SPA. In addition, second-order advantage can be achieved by the residual bilinearization (RBL) procedure when an unexpected constituent is present in a test sample. For this purpose, SPA was modified in order to select intervals for use in trilinear PLS. The ability of the proposed algorithm, namely iSPA-N-PLS, was evaluated on one simulated and two experimental data sets, comparing the results to those obtained by N-PLS. In the simulated system, two analytes were quantitated in two test sets, with and without unexpected constituent. In the first experimental system, the determination of the four fluorophores (l-phenylalanine; l-3,4-dihydroxyphenylalanine; 1,4-dihydroxybenzene and l-tryptophan) was conducted with excitation-emission data matrices. In the second experimental system, quantitation of ofloxacin was performed in water samples containing two other uncalibrated quinolones (ciprofloxacin and danofloxacin) by high performance liquid chromatography with UV–vis diode array detector. For comparison purpose, a GA algorithm coupled with N-PLS/RBL was also used in this work. In most of the studied cases iSPA-N-PLS proved to be a promising tool for selection of variables in second-order calibration, generating models with smaller RMSEP, when compared to both the global model using all of the sensors in two dimensions and GA-NPLS/RBL.  相似文献   

16.
Glycerol monolaurate (GML) products contain many impurities, such as lauric acid and glucerol. The GML content is an important quality indicator for GML production. A hybrid variable selection algorithm, which is a combination of wavelet transform (WT) technology and modified uninformative variable eliminate (MUVE) method, was proposed to extract useful information from Fourier transform infrared (FT-IR) transmission spectroscopy for the determination of GML content. FT-IR spectra data were compressed by WT first; the irrelevant variables in the compressed wavelet coefficients were eliminated by MUVE. In the MUVE process, simulated annealing (SA) algorithm was employed to search the optimal cutoff threshold. After the WT-MUVE process, variables for the calibration model were reduced from 7366 to 163. Finally, the retained variables were employed as inputs of partial least squares (PLS) model to build the calibration model. For the prediction set, the correlation coefficient (r) of 0.9910 and root mean square error of prediction (RMSEP) of 4.8617 were obtained. The prediction result was better than the PLS model with full-spectra data. It was indicated that proposed WT-MUVE method could not only make the prediction more accurate, but also make the calibration model more parsimonious. Furthermore, the reconstructed spectra represented the projection of the selected wavelet coefficients into the original domain, affording the chemical interpretation of the predicted results. It is concluded that the FT-IR transmission spectroscopy technique with the proposed method is promising for the fast detection of GML content.  相似文献   

17.
Multivariate spectral analysis has been widely applied in chemistry and other fields. Spectral data consisting of measurements at hundreds and even thousands of analytical channels can now be obtained in a few seconds. It is widely accepted that before a multivariate regression model is built, a well-performed variable selection can be helpful to improve the predictive ability of the model. In this paper, the concept of traditional wavelength variable selection has been extended and the idea of variable weighting is incorporated into least-squares support vector machine (LS-SVM). A recently proposed global optimization method, particle swarm optimization (PSO) algorithm is used to search for the weights of variables and the hyper-parameters involved in LS-SVM optimizing the training of a calibration set and the prediction of an independent validation set. All the computation process of this method is automatic. Two real data sets are investigated and the results are compared those of PLS, uninformative variable elimination-PLS (UVE-PLS) and LS-SVM models to demonstrate the advantages of the proposed method.  相似文献   

18.
A new class-modeling method, referred to as partial least squares density modeling (PLS-DM), is presented. The method is based on partial least squares (PLS), using a distance-based sample density measurement as the response variable. Potential function probability density is subsequently calculated on PLS scores and used, jointly with residual Q statistics, to develop efficient class models. The influence of adjustable model parameters on the resulting performances has been critically studied by means of cross-validation and application of the Pareto optimality criterion. The method has been applied to verify the authenticity of olives in brine from cultivar Taggiasca, based on near-infrared (NIR) spectra recorded on homogenized solid samples. Two independent test sets were used for model validation. The final optimal model was characterized by high efficiency and equilibrate balance between sensitivity and specificity values, if compared with those obtained by application of well-established class-modeling methods, such as soft independent modeling of class analogy (SIMCA) and unequal dispersed classes (UNEQ).  相似文献   

19.
A partial least squares (PLS) regression model based on attenuated total reflectance–Fourier transform infrared spectra of heated olive oil samples has been developed for the determination of polymerized triacylglycerides (PTGs) generated during thermal treatment of oil. Three different approaches for selection of the spectral regions used to build the PLS model were tested and compared: (1) variable selection based on expert knowledge, (2) uninformative variable elimination PLS, and (3) interval PLS. Each of the three variable selection methods provided PLS models from heated olive oil samples with excellent performance for the prediction of PTGs in fried olive oils with comparable model statistics. However, besides a high coefficient of determination (R 2 of 0.991) and low calibration, validation, and prediction errors of 1.14%, 1.21%, and 1.40% w/w, respectively, variable selection based on expert knowledge gave additionally almost identical low calibration (−0.0017% w/w) and prediction (−0.0023% w/w) bias. Furthermore, it was verified that the determination of PTGs was not influenced by the type of foodstuff fried in the olive oil.  相似文献   

20.
This paper presents and discusses the building of discriminant models from attenuated total reflectance (ATR)-FTIR and Raman spectra that were constructed to detect the presence of acetaminophen in over-the-counter pharmaceutical formulations. The datasets, containing 11 spectra of pure substances and 21 spectra of various formulations, were processed by partial least squares (PLS) discriminant analysis. The models found in the present study coped greatly with the discrimination, and their quality parameters were acceptable. A root mean square error of cross-validation was in the 0.14-0.35 range, while a root mean square error of prediction was in the 0.20-0.56 range. It was found that standard normal variate preprocessing had a negligible influence on the quality of ATR-FTIR; in the Raman case, it lowered the prediction error by 2. The influence of variable selection with the uninformative variable elimination by PLS method was studied, and no further model improvement was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号