首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamic fractionation has been recognized as an appealing alternative to conventional equilibrium-based sequential extraction procedures (SEPs) for partitioning of trace elements (TE) in environmental solid samples. This paper reports the first attempt for harmonization of flow-through dynamic fractionation using two novel methods, the so-called sequential injection microcolumn (SIMC) extraction and rotating coiled column (RCC) extraction. In SIMC extraction, a column packed with the solid sample is clustered in a sequential injection system, while in RCC, the particulate matter is retained under the action of centrifugal forces. In both methods, the leachants are continuously pumped through the solid substrates by the use of either peristaltic or syringe pumps.A five-step SEP was selected for partitioning of Cu, Pb and Zn in water soluble/exchangeable, acid-soluble, easily reducible, easily oxidizable and moderately reducible fractions from 0.2 to 0.5 g samples at an extractant flow rate of 1.0 mL min−1 prior to leachate analysis by inductively coupled plasma-atomic emission spectrometry.Similarities and discrepancies between both dynamic approaches were ascertained by fractionation of TE in certified reference materials, namely, SRM 2711 Montana Soil and GBW 07311 sediment, and two real soil samples as well. Notwithstanding the different extraction conditions set by both methods, similar trends of metal distribution were in generally found. The most critical parameters for reliable assessment of mobilisable pools of TE in worse-case scenarios are the size-distribution of sample particles, the density of particles, the content of organic matter and the concentration of major elements. For reference materials and a soil rich in organic matter, the extraction in RCC results in slightly higher recoveries of environmentally relevant fractions of TE, whereas SIMC leaching is more effective for calcareous soils.  相似文献   

2.
Microwave-acid digestion (MW-AD) followed by inductively coupled plasma-atomic emission spectrometry (ICP-AES), graphite furnace atomic absorption spectrometry (GFAAS), and hydride generation atomic absorption spectrometry (HGAAS) were examined for the determination of various elements in coal and coal fly ash (CFA). Eight certified reference materials (four coal samples and four CFA samples) were tested. The 10 elements (As, Be, Cd, Co, Cr, Mn, Ni, Pb, Sb, and Se), which are described in the Clean Air Act Amendments (CAAA), were especially considered. For coal, the HF-free MW-AD followed by ICP-AES was successful in the determination of various elements except for As, Be, Cd, Sb, and Se. These elements (except for Sb) were well-determined by use of GFAAS (Be and Cd) and HGAAS (As and Se). For CFA, the addition of HF in the digestion acid mixture was needed for the determination of elements, except for As, Sb, and Se, for which the HF-free MW-AD was applicable. The use of GFAAS (Be and Cd) or HGAAS (Sb and Se) resulted in the successful determination of the elements for which ICP-AES did not work well. The protocol for the determination of the 10 elements in coal and CFA by MW-AD followed by the joint-use of ICP-AES, GFAAS, and HGAAS was established.  相似文献   

3.
Sequential injection microcolumn extraction (SI-MCE) based on the implementation of a soil-containing microcartridge as external reactor in a sequential injection network is, for the first time, proposed for dynamic fractionation of macronutrients in environmental solids, as exemplified by the partitioning of inorganic phosphorus in agricultural soils. The on-line fractionation method capitalises on the accurate metering and sequential exposure of the various extractants to the solid sample by application of programmable flow as precisely coordinated by a syringe pump.

Three different soil phase associations for phosphorus, that is, exchangeable, Al- and Fe-bound, and Ca-bound fractions, were elucidated by accommodation in the flow manifold of the three steps of the Hieltjes–Lijklema (HL) scheme involving the use of 1.0 M NH4Cl, 0.1 M NaOH and 0.5 M HCl, respectively, as sequential leaching reagents. The precise timing and versatility of SI for tailoring various operational extraction modes were utilized for investigating the extractability and the extent of phosphorus re-distribution for variable partitioning times.

Automatic spectrophotometric determination of soluble reactive phosphorus in soil extracts was performed by a flow injection (FI) analyser based on the Molybdenum Blue (MB) chemistry. The 3σ detection limit was 0.02 mg P L−1 while the linear dynamic range extended up to 20 mg P L−1 regardless of the extracting media. Despite the variable chemical composition of the HL extracts, a single FI set-up was assembled with no need for either manifold re-configuration or modification of chemical composition of reagents.

The mobilization of trace elements, such as Cd, often present in grazed pastures as a result of the application of phosphate fertilizers, was also explored in the HL fractions by electrothermal atomic absorption spectrometry.  相似文献   


4.
Dynamic flow-through extraction/fractionation methods have recently drawn much attention as appealing alternatives to the batchwise steady-state counterparts for the evaluation of environmentally available pools of potentially hazardous trace elements in solid matrices. The most critical weakness of flow-based column approaches lies in the small amount of solid that can be handled, whereby their applicability has been merely limited to date to the extraction of trace elements in highly homogeneous solid substrates; otherwise the representativeness of the test portion might not be assured.To tackle this limitation, we have devised an automated flow-through system incorporating a specially designed extraction column with a large volume capacity, wherein up to 2 g of solid sample could be handled without undue backpressure. The assembled flow setup was exploited for fast screening of potentially hazardous trace elements (namely, Cd, Cr, Cu, Pb, and Zn) in highly inhomogeneous municipal solid waste incineration (MSWI) bottom ashes. The pools of readily mobilizable metal forms were ascertained using the Toxicity Characteristic Leaching Procedure (TCLP) based on the usage of 0.1 mol L−1 CH3COOH as leachant and analysis of extracts by inductively coupled optical emission spectrometry. The application of a two-level full factorial (screening) design revealed that the effect of sample fluidization primarily but other experimental factors such as the solid to liquid ratio and extractant flow rate significantly influenced the leachability of given elements in raw bottom ashes at the 0.05 significance level.The analytical performance of the novel flow-based method capitalized on fluidized-bed extraction was evaluated in terms of accuracy, through the use of mass balance validation, reproducibility and operational time as compared to batchwise extraction and earlier flow injection/sequential injection microcolum-based leaching tests.  相似文献   

5.
This work investigates how the amounts of some important substances in a plant, and their behaviour inside the plant, depend on the levels of stress placed on the plant. To this end, model plant spinach (Spinacia oleracea L.) was cultivated on soil treated with sewage sludge. The sewage sludge contained various trace elements (As, Cd, Cu, Zn), and the uptake of these trace elements placed the plant under stress. Following this, a sequential extraction procedure was employed to determine the levels and distributions of trace elements within the most important groups of compounds present in the spinach plants. Since the usual five-step sequential extraction procedure provides only general information on the distributions of elements within individual groups of organic compounds, due to the wide range of organic compounds within the individual fractions, this scheme was extended and improved through the addition of two solvent extraction steps—a butanol step (between the ethyl acetate and methanol solvent steps) and an H2O step (after the methanol+H2O solvent step). The distributions and levels of the trace elements within the main groups of compounds in spinach biomass was investigated using this new seven step sequential extraction (water free solvents: petroleum ether (A) ethyl acetate (B) butanol (C) methanol (D) water solvents: methanol+H2O (1+1; v/v) (E) H2O (F) methanol+H2O+HCl (49.3+49.3+1.4; v/v/v) (G)). The isolated fractions were characterized using IR spectroscopy and the trace element contents were determined in the individual fractions. Lipophilic compounds with low contents of Cd, Cu and Zn were separated in the first two fractions (A, B). Compounds with higher As contents (11.5–12.8% of total content) were also extracted in the second fraction, B. These two fractions formed the smallest portion of the isolated fractions. Low molecular compounds from secondary metabolism and polar lipids were separated in the third (C) and fourth (D) fractions, and high molecular compounds (mainly polypeptides and proteins) separated in the fifth and sixth fractions (E, F). The addition of the H2O solvent step was particularly useful for separating compounds that have a significant impact on trace element bounds. The methanol fraction was dominant for all treatments, and a significant decrease in the spinach biomass separated in this fraction was observed when the soil was treated with sewage sludge. Most of the As (35.5–38.8% of total content), Cu (45.0–51.6%) and Zn (39.8–47.2%) was also determined in this fraction. The G fraction (obtained after acid hydrolysis) contained polar compounds. Most of the Cd was also found in this fraction, as was a significant amount of Zn. Non-extractable residues formed the last fraction (polysaccharides, proteins).  相似文献   

6.
A fully automated flow-through microcolumn fractionation system with on-line post-extraction derivatization is proposed for monitoring of orthophosphate in solid samples of environmental relevance. The system integrates dynamic sequential extraction using 1.0 mol l−1 NH4Cl, 0.1 mol l−1 NaOH and 0.5 mol l−1 HCl as extractants according to the Hieltjes-Lijklema (HL) scheme for fractionation of phosphorus associated with different geological phases, and on-line processing of the extracts via the Molybdenum Blue (MB) reaction by exploiting multisyringe flow injection as the interface between the solid containing microcolumn and the flow-through detector. The proposed flow assembly, capitalizing on the features of the multicommutation concept, implies several advantages as compared to fractionation analysis in the batch mode in terms of saving of extractants and MB reagents, shortening of the operational times from days to hours, highly temporal resolution of the leaching process and the capability for immediate decision for stopping or proceeding with the ongoing extraction. Very importantly, accurate determination of the various orthophosphate pools is ensured by minimization of the hydrolysis of extracted organic phosphorus and condensed inorganic phosphates within the time frame of the assay. The potential of the novel system for accommodation of the harmonized protocol from the Standards, Measurement and Testing (SMT) Program of the Commission of the European Communities for inorganic phosphorus fractionation was also addressed. Under the optimized conditions, the lowest detectable concentration at the 3σ level was ≤0.02 mg P l−1 for both the HL and SMT schemes regardless of the extracting media. The repeatability of the MB assay was better than 2.5% and the dynamic linear range extended up to 7.0 mg P l−1 in NH4Cl and NaOH media and 15 mg P l−1 whenever HCl is utilized as extractant for both the HL and SMT protocols.  相似文献   

7.
The concentrations of chromium (III) and (VI) in fly ash from nine Australian coal fired power stations were determined. Cr(VI) was completely leached by extraction with 0.01 M NaOH solution and the concentration was determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). This was confirmed by determining Cr(III) and Cr(VI) in the extracts of fly ash that had been spiked with chromium salts. These analytical measurements were done using a combination of ion-exchange chromatography and ICP-AES. The elutant was 0.05 M HNO3 containing 0.5%-CH3OH. When the column was operated at a flow rate of 1.2 ml min−1 and samples were injected by use of a sample loop with a volume of 100 μl, Cr(III) and Cr(VI) in sample solution was exclusively separated within approximately 10 min. The detection limits (3σ) were 5 ng for Cr(III) (0.050 mg l−1) and 9 ng for Cr(VI) (0.090 mg l−1), respectively. A relative standard deviation of 1.9% (n = 6) was obtained for the determination by IC-ICP-AES of 0.25 mg l−1 Cr(III) and Cr(VI).  相似文献   

8.
Fractionation of the metals Cd, Cr, Cu, Ni, Pb and Zn in sediments was performed for samples collected from eight locations in the Poxim river estuary of Sergipe State, northeast Brazil, using the 3-stage sequential extraction procedure proposed by the European Community Bureau of Reference (BCR). The extraction method was found to be satisfactory for analysis of certified reference material BCR-701, with recovery values ranging from 85% (Cu) to 117% (Cr). The detection limits obtained were 0.001 to 0.305 µg g− 1. Zn exhibited greatest mobility and bioavailability, indicative of anthropogenic sources, while Cr was mainly found in the residual fraction and could be used as an indicator for the contribution from natural sources. Cd, Cu, Ni and Pb were associated with the oxidizable fraction, and Pb, Cr and Ni with the reducible fraction. Principal component analysis (PCA) clearly separated the metals into three groups: I (Zn); II (Pb); III (Cd, Cu, Cr and Ni). These groupings were mainly due to different distributions of the metals in the various fractions, in sediments from the different locations. Risk assessment code (RAC) analysis indicated that although the metals presented a moderate overall risk to the aquatic environment, nickel showed a low risk (RAC < 10%) at three sites, while zinc presented a high risk (RAC > 30%) at four other sites.  相似文献   

9.
Bingöl D  Akçay M 《Talanta》2005,66(3):600-604
The fly ash samples obtained from Kangal Power Plant were prepared for FAAS analysis by a new approach. The trace elements of the fly ash samples were leached with appropriate solvents under suitable conditions. The leaching method is known as an effective technique for substances dissolving very hard and refractory materials. The leaching effects of solvents and their mixtures were investigated on fly ash samples that are used largely in analysis of soil and sediment samples.The fly ashes mainly consist of glassy aluminosilicates. The major components of the samples are SiO2, Al2O3, CaO and Fe2O3. Therefore, decomposition of the silicate lattice of the fly ash is required for liberation of trace elements. The dissolution process can be completed by using a mineral acid such as concentrated HCl. This technique has an advantage that the fly ash can be dissolved without any oxidation at room temperature.Maximum element recoveries were obtained by the procedure of 37% HCl leaching after the samples were treated with 2.0 ml of concentrated HF. It was also observed that maximum mass loss occurred in this procedure. The effect of the four leaching reagents, which are HCl, HNO3, HClO4 and HNO3 + HClO4, were investigated on fly ash samples that were treated with concentrated HF. An optimum leaching method was determined based on the confidence of analytical results and element recovery rates.  相似文献   

10.
A comparative evaluation of the mercury distribution in a soil sample from Almaden (Spain) has been performed by applying three different sequential extraction procedures, namely, modified BCR (three steps in sequence), Di Giulio–Ryan (four steps in sequence), and a specific SEP developed at CIEMAT (six steps in sequence). There were important differences in the mercury extraction results obtained by the three procedures according to the reagents applied and the sequence of their application. These findings highlight the difficulty of setting a universal SEP to obtain information on metal fractions of different mobility for any soil sample, as well as the requirement for knowledge about the mineralogical and chemical characteristics of the samples. The specific six-step CIEMAT sequential extraction procedure was applied to a soil profile (Ap, Ah, Bt1, and Bt2 horizons). The distribution of mercury and major, minor, and trace elements in the different fractions were determined. The results indicate that mercury is mainly released with 6 M HCl. The strong association of mercury with crystalline iron oxyhydroxides, present in all the horizons of the profile, and/or the solubility of some mercury compounds in such acid can explain this fact. Minor mercury is found in the fraction assigned to oxidizable matter and in the final insoluble residue (cinnabar).  相似文献   

11.
采集了燃煤电厂的异相凝并后飞灰,分析了其物理化学特性。并通过淋滤实验研究了飞灰中重金属As、Se、Pb的环境稳定性。结果表明,凝并飞灰的粒径峰值为138.04 μm,而粉煤灰为60.26 μm;凝并后细颗粒凝聚成了较大的颗粒;凝并飞灰中重金属As、Se、Pb含量均高于同工况下粉煤灰中的含量,且后序脱硫环节所产生石膏中重金属的含量有所下降;批淋滤实验研究结果表明,凝并飞灰中的重金属浸出能力受淋滤液的pH值影响较大,温和环境和碱性条件抑制了As的浸出,酸性和碱性条件抑制了Se的浸出,而碱性条件抑制了Pb的浸出。柱淋滤实验研究结果表明,在酸性溶液和水溶液中,凝并飞灰的重金属浸出能力均受到了抑制。  相似文献   

12.
Coal and fly ash contain many elements. These elements exist in different forms which may change throughout the coal combustion process. There are several processes, including X-ray techniques and leaching techniques by which studies have attempted to assess the form of a particular element in a sample. This work focuses on determining the leachability of selected elements sequentially leached in four extraction solutions: water, 1 M ammonium acetate, 3 M hydrochloric acid and 50% hydrofluoric acid. The emphasis is on evaluating the steps involved in the leaching process with the mass recovery for each element being the basis for evaluation. The total amount of each element that will leach out under the given extraction condition is presented as a fraction of the total present in the material. The materials evaluated were NIST coal and fly ash standards. The elements measured in this study include aluminum, barium, beryllium, calcium, chromium, cobalt, iron, magnesium, manganese, nickel, potassium, sodium, strontium, vanadium and zinc.  相似文献   

13.
There is a current worldwide interest for evaluating the potential reuse of municipal solid waste incineration (MSWI) bottom ash as a sub-base in road construction and secondary building material. Yet, there is a need for exploration of the physicochemical features of the bottom ashes to ensure environmental sustainability. To this end, batchwise water extraction as promulgated by the European norm EN 12457 or the German DIN 38414-S4 tests is commonly utilized to ascertain the impact of leachable trace elements in bottom ashes on biota. However, the above extraction protocols are not properly simulating the dynamic extraction conditions occurring in the nature, whereby the analytical information provided for risk assessment is debatable.In this work, a downscaled flow-through extraction method is proposed for mimicking the leaching of hazardous trace elements (namely, Pb, Zn, Cd, Cu and Cr) in MSWI bottom ashes by runoff waters more accurately than the manual counterparts. The flow assembly facilitates the full automation of standard and regulatory leaching tests by packing of a suitable amount of solid material into a column, whereupon the leaching reagent is continuously pumped through, thus yielding an accurate assessment of the environmentally significant water-extraction fraction with no effect from readsorption phenomena.The flow-through column system is exploited as a screening tool for fast evaluation of the influence of natural bottom ash weathering on the immobilization of hazardous elements to dictate the potential reuse of the solid waste. The dependence of sorption sites for humic substances on trace element leachability is also discussed. As compared to the steady-state approach, the dynamic method features the substantial shortening of the analytical extraction protocol from 24 h to just 30 min, better precision, with relative standard deviations (R.S.D.) <11% versus >20% R.S.D. for batchwise extraction, improved accuracy because of the absence of metal redistribution phenomena and minimization of manual operations as well as straightforward investigation of leaching rates for the suite of target elements.  相似文献   

14.
In this work, the original BCR extraction scheme was modified and applied to study the partitioning of metals in fly ashes. In the first step, the water-soluble fraction was investigated here. The next metal fractions were acid-soluble, reducible, and oxidisable. Two kinds of coal fly ash certified reference materials were analysed. Metal concentrations in the extracts were measured by inductively coupled plasma atomic emission spectrometry (ICP-AES). The efficiency of the extraction process for each step was examined. The partitioning of metals between the individual fractions was investigated and is discussed.  相似文献   

15.
Sequential extraction procedure (acid extractable, reducible, oxidizable, and residual) proposed by BCR was applied for the determination of trace metals in the River Yesilirmak sediments, Tokat, Turkey. The determination of trace metals in sediment samples was performed by flame atomic absorption spectrometry. The proposed method showed satisfactory recovery, detection limits and standard deviation for trace metals determination in sediment samples. Generally, most of the elements were found in the oxidizable and residual fractions. The total concentrations of trace metals analyzed were found to be (mg/kg) Cu: 37.9, Mn: 392.2, Zn: 126.2, Fe: 3726, and Pb: 29.6, respectively. Results obtained are in agreement with data reported in the literature.  相似文献   

16.
The effect of adding treated red mud, a by-product of alumina production, to soil polluted by an abandoned mine and characterised by high concentrations of heavy metals, relatively low reaction grade, and low organic carbon content, was investigated. Also studied was addition of both red mud and compost (produced from source-separated municipal solid waste)—the synergistic action of red mud and compost could be exploited to achieve both metal trapping and an increase in organic carbon content. Leaching batch tests were performed on four different systems: soil, soil and treated red mud, soil and compost, soil and compost plus treated red mud. Dilute sulfuric acid and EDTA solution (liquid/solid ratio 10:1) were used in the tests—sulfuric acid to mimic acid rain and EDTA in accordance with general methods for estimating plant-available metals. Sequential extraction was also applied to the same samples. The use of relatively non-specific extractant reagents in the leaching tests led to a kinetic approach (already proposed in literature), because measurements of trace elements extracted at equilibrium cannot be related to their speciation. Comparison of information obtainable by the kinetic approach to evaluation of data from leaching tests with results from sequential extraction enabled evaluation whether the kinetic fractionation method, a relatively rapid and simple procedure, furnishes adequate information about the mobility and bioavailability of trace elements. Especially interesting results were obtained for Mn, Zn, and Ni, present in large amounts in the soil studied—their leachability was significantly reduced by addition of red mud and compost, suggesting interesting perspectives in soil-remediation activity.  相似文献   

17.
A fully automated modified three-step BCR flow-through sequential extraction method was developed for the fractionation of the arsenic (As) content from agricultural soil based on a multi-syringe flow injection analysis (MSFIA) system coupled to hydride generation-atomic fluorescence spectrometry (HG-AFS). Critical parameters that affect the performance of the automated system were optimized by exploiting a multivariate approach using a Doehlert design. The validation of the flow-based modified-BCR method was carried out by comparison with the conventional BCR method. Thus, the total As content was determined in the following three fractions: fraction 1 (F1), the acid-soluble or interchangeable fraction; fraction 2 (F2), the reducible fraction; and fraction 3 (F3), the oxidizable fraction. The limits of detection (LOD) were 4.0, 3.4, and 23.6 μg L−1 for F1, F2, and F3, respectively. A wide working concentration range was obtained for the analysis of each fraction, i.e., 0.013–0.800, 0.011–0.900 and 0.079–1.400 mg L−1 for F1, F2, and F3, respectively. The precision of the automated MSFIA–HG-AFS system, expressed as the relative standard deviation (RSD), was evaluated for a 200 μg L−1 As standard solution, and RSD values between 5 and 8% were achieved for the three BCR fractions. The new modified three-step BCR flow-based sequential extraction method was satisfactorily applied for arsenic fractionation in real agricultural soil samples from an arsenic-contaminated mining zone to evaluate its extractability. The frequency of analysis of the proposed method was eight times higher than that of the conventional BCR method (6 vs 48 h), and the kinetics of lixiviation were established for each fraction.  相似文献   

18.
An optimized sequential extraction (SE) scheme for mine waste materials has been developed and tested for As partitioning over a range of pure As-bearing mineral phases, their model mixtures, and natural mine waste materials. This optimized SE procedure employs five extraction steps: (1) nitrogen-purged deionized water, 10 h; (2) 0.01 M NH4H2PO4, 16 h; (3) 0.2 M NH4-oxalate in the dark, pH3, 2 h; (4) 0.2 M NH4-oxalate, pH3/80 °C, 4 h; (5) KClO3/HCl/HNO3 digestion. Selectivity and specificity tests on natural mine wastes and major pure As-bearing mineral phases showed that these As fractions appear to be primarily associated with: (1) readily soluble; (2) adsorbed; (3) amorphous and poorly-crystalline arsenates, oxides and hydroxosulfates of Fe; (4) well-crystalline arsenates, oxides, and hydroxosulfates of Fe; as well as (5) sulfides and arsenides. The specificity and selectivity of extractants, and the reproducibility of the optimized SE procedure were further verified by artificial model mineral mixtures and different natural mine waste materials. Partitioning data for extraction steps 3, 4, and 5 showed good agreement with those calculated in the model mineral mixtures (<15% difference), as well as that expected in different natural mine waste materials. The sum of the As recovered in the different extractant pools was not significantly different (89–112%) than the results for acid digestion. This suggests that the optimized SE scheme can reliably be employed for As partitioning in mine waste materials.  相似文献   

19.
Copper and zinc were determined in municipal solid waste (MSW) samples with different deposit ages from Tianziling landfill site. The pseudototal metal contents of the MSW samples were determined following an aqua regia digestion. Operational speciation was performed using the modified BCR sequential extraction procedure. Analyses were carried out by AAS. Agreement between most of triplicate samples was acceptable. The amount of copper and zinc extracted in the sequential procedure (i.e. Step 1, Step 2, Step 3, residual) did not generally agree well with pseudototal digestion. Various MSW samples contained significant different levels of copper and zinc, but these were with different potential migrations. For example, 49.88%-76.34% of copper existed in five MSW samples was present as oxidable fraction while ~ 40% of zinc was present as acid soluble fraction. The study illustrates the feasibility and importance of modified BCR sequential extraction procedure used as evaluation method when assessing the potential mobility of heavy metal in MSW landfill.  相似文献   

20.
Chaozhang Huang 《Talanta》2007,73(2):274-281
Mesoporous titanium dioxide as a novel solid-phase extraction material for flow injection micro-column preconcentration on-line coupled with ICP-OES determination of trace metals (Co, Cd, Cr, Cu, Mn, Ni, V, Ce, Dy, Eu, La and Yb) in environmental samples was described. Possessing a high adsorption capacity towards the metal ions, mesoporous titanium dioxide has found to be of great potential as an adsorbent for the preconcentration of trace metal ions in samples with complicated matrix. The experimental parameters including pH, sample flow rate, volume, elution and interfering ions on the recovery of the target analytes were investigated, and the optimal experimental conditions were established. Under the optimized operating conditions, a preconcentration time of 90 s and elution time of 18 s with enrichment factor of 10 and sampling frequency of 20 h−1 were obtained. The detection limits of this method for the target elements were between 0.03 and 0.36 μg L−1, and the relative standard deviations (R.S.D.s) were found to be less than 6.0% (n =7, c =5 ng mL−1). The proposed method was validated using a certified reference material, and has been successfully applied for the determination of the afore mentioned trace metals in natural water samples and coal fly ash with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号