首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
以PCl5和NH4Cl为原料采用"一步法"合成了线型聚二氯磷腈(4);4与6-咔唑基己醇发生亲核取代反应合成了聚双(6-咔唑基己氧基)磷腈(5),其结构经1H NMR,31P NMR,IR和GPC表征。热分析结果表明,5具有良好的热稳定性和较高的玻璃化温度。  相似文献   

2.
以PCl5和NH4Cl为原料,利用一锅法制备了聚二氯膦腈,通过两步亲核取代反应,分别以甘氨酸乙酯和对羟基苯甲酸甲酯为亲核试剂,合成了混合取代可生物降解聚[(对羟基苯甲酸甲酯/甘氨酸乙酯)膦腈].用核磁共振波谱及红外光谱等对产物结构进行了表征.研究了甘氨酸乙酯和对羟基苯甲酸甲酯的比例及外界环境对所制备的聚膦腈降解性能的影响,并进行了体外降解实验.研究结果表明,通过改变甘氨酸乙酯和对羟基苯甲酸甲酯的比例,可获得一种降解速率可调节的生物降解膦腈聚合物.  相似文献   

3.
有机 /无机杂化聚磷腈具有优良的加工性能和使用性能 ,可以在许多领域获得应用 [1] .具有光电活性的聚磷腈研究也引起了广泛的关注 [2~ 4 ] . Allcock等 [2 ] 合成了具有离子传导特性的聚磷腈 ,可应用于锂离子电池 .具有非线性光学特性的聚合物也有研究报道 [3 ] . L eung等 [4 ] 合成了具有电致发光基团的聚磷腈 ,部分聚合物具有蓝光发射的特征 .合成化学键合的聚 (N -烷基 )吡咯通用聚合物复合膜材料已经得到了重视[5,6] .本文合成了 2 -吡咯基乙醇 ,将其与反应性无机聚合物聚 (二氯 )磷腈进行高分子取代反应 ,合成了含吡咯侧基的聚磷…  相似文献   

4.
某温度下,开始反应PCl5浓度为0.0200 mol/L,若达平衡时PCl5分解率为50%,则[PCl5]=[PCl3]=[Cl2]=0.0100 mol/L。恒温,若加入0.0200 mol PCl5,对平衡有何影响?(1)设在恒温、恒压下加PCl5,则在达平衡时,加入的PCl5也是[PCl5]=[PCl3]=[Cl2]=0.0100 mol。从效果上看,加入PCl5有5%分解了,显然,此时体系的体积是原先的2倍(图中b)。恒温对这个“加了”PCl5又达平衡的体系加压,设p→2p(图中c)。加压瞬间,PCl5、PCl3、Cl2浓度均增大为0.0200 mol/L,平衡将向生成PCl5方向移动,达平衡时[PCl5]>0.0200 mol/L,[PCl3]=[Cl2]<0.0200 mol/L…  相似文献   

5.
以PCl3和季戊四醇为原料合成了中间体3,9$C二氯-2,4,8,10$C四氧代-3,9-二磷杂螺[5.5]十一烷,产率达99.6%.对反应条件进行了优化,最佳反应条件为:PCl3和季戊四醇摩尔比为2.5∶1,反应温度80℃,反应时间1.5h.  相似文献   

6.
周秋丽  梁焕  赵燕  陆茵 《分析化学》2008,36(4):509-513
以2-氯乙氧基乙醇、三氟乙醇和六氯环三聚磷腈为原料,合成2-氯二乙氧基和三氟乙氧基的混合取代聚磷腈。利用31P NMR对反应过程和聚合物的纯化过程进行跟踪,提供了六氯环三聚磷腈、聚二氯磷腈、以及这两种物质的2-氯二乙氧基、三氟乙氧基单一取代和共混取代产物的31P NMR谱图,并通过对这些核磁共振谱数据的对比分析。研究了聚合、取代反应进程和聚合物的提纯程度,建立了用31P NMR对其取代反应和纯化过程进行监测的方法。在以85%H3PO4为外标时,六氯环三聚磷腈的共振峰为δΡ21.30,聚二氯磷腈为δΡ16.61,三氟乙氧基取代环三聚磷腈是δΡ17.97,2-氯二乙氧基在不同位置上取代环三聚磷腈的共振峰是δΡ20.90、δΡ20.48和δΡ12.86处的三连峰,δΡ20.10、δΡ19.65和δΡ8.72处的五连峰则是2-氯二乙氧基和三氟乙氧基在不同位置上取代环三聚磷腈的共振峰,聚[(2-氯二乙氧基)x(三氟乙氧基)2-x]磷腈的共振峰是一个宽峰δΡ7.25。此外,δΡ-7.22对应聚二(2-氯二乙氧基)磷腈,δP-6.88对应聚二(三氟乙氧基)磷腈。对六氯环三聚磷腈和聚二氯磷腈而言,三氟乙氧基都是一种强的亲核取代基团,能够完全取代其上的氯,且取代产物易于通过丙酮-苯的溶解沉淀法去除小分子杂质而得到纯化,而2-氯二乙氧基能完全取代聚二氯磷腈上的氯,但对六氯环三聚磷腈只能部分取代,且须通过更多次的溶解沉淀才能从聚合物中去除杂质。  相似文献   

7.
以六氯三聚磷腈和甲氧基乙氧基乙醇为主要原料,合成了全取代的六(甲氧基乙氧基乙氧基)三聚磷腈,并用IR、31P NMR、1HNMR、13C NMR、FABMS等现代谱学技术对其结构进行了表征。经生物活性试验证明,此化合物对腐生线虫Panagrellus redivivus具有一定的毒杀活性。  相似文献   

8.
微波作用下2,5-二取代-1,3,4-噁二唑的合成   总被引:2,自引:0,他引:2  
2 ,5 二取代 1 ,3 ,4 二唑可用作药品 ,光敏物质 ,闪烁体 ,激光材料 ,高分子液晶单体等[1- 5] 。一种是以芳香酸与水合肼作为原料用多聚磷酸作为脱水环合剂来合成此类化合物[6 ] ,另一种是由芳香酸转变为芳香酰氯或酯 ,再与水合肼反应得到单酰肼或二酰肼 ,最后用三氯氧磷[7] ,五氧化二磷和五氯化磷[8] ,一氯三甲硅[9] 脱水环合 ;此外 ,用水合肼和尿素合成得到的氨基脲代替水合肼 ,与芳香酸缩合合成二唑[10 ] ,这些方法共同的缺陷是 :环合时间较长 ,少者 4~ 5h ,多则 8h。近年来 ,微波技术在有机合成及其杂环化合物的合成中得到了广…  相似文献   

9.
Mn( )能与许多氮氧化合物形成配合物 ,Wilde对 Mn( )与 2 ,2 -联吡啶及 1 ,1 -二氮杂菲的均配配合物作过详细研究 [1,2 ] ;Mn( )与 2 ,2 -联吡啶 - 1 ,1 -二氧化物 ( bipy O2 )的配合物也有综述 [3] .Mn( )与 bipy O2 的配合物大多是以 Cl O- 4、NO- 3、[Pt Cl4 ]2 -为阴离子 ,少数是卤离子 .它们均形成配位体数目为 3的单核螯合物 ,这些配合物是在水或乙醇中合成的 .Mn( )与 bipy O2 的多核聚合物还未见报道 .本文用 DMF为溶剂 ,以无水 Mn Cl2 和 2 ,2 -联吡啶 - 1 ,1 -二氧化物为原料 ,合成了 Mn( )与bipy O2 的三聚…  相似文献   

10.
利用正交法研究了六氯环三磷腈的合成反应;针对较典型的四个因素,分别取四水平L16(45)正交表进行正交试验,确定了合成目标产物的主要影响因素和优化反应条件.结果表明,先将2/3的固体五氯化磷与2%无水氯化锌和30%吡啶(以五氯化磷物质的量计)混合,再缓慢滴加入剩余的五氯化磷氯苯溶液,最高产率可达84%以上;方差分析结果...  相似文献   

11.
吡啶环作为一种缺π电子的芳杂环,其酰化反应一般需要在较强烈的反应条件下才能进行,且酰化主要发生在β位上.本文报道了一个温和条件下发生的吡啶环α位上的酰化反应,即在室温下,将3,5,6-三甲基-2-吡嗪甲酸(川芎酸)加入到三氯氧磷和吡啶的混合物中,迅速发生反应,产物经MS,IR,1HNMR,13CNMR等谱图表征,为吡啶的α位酰化物.  相似文献   

12.
The adsorption of pyridine onto the Ge(100) surface has been studied using both real-time scanning tunneling microscopy (STM) and ab initio pseudopotential density functional calculations. The results show that pyridine molecules adsorb on the electron-deficient down-Ge atoms of the Ge=Ge dimers via Ge-N dative bonding, with the pyridine ring tilted to the surface. The electron-rich up-Ge atoms remaining after adsorption of pyridine induce an asymmetric dimer row, which is mainly reconstructed to the c(4 x 2) structure. At pyridine coverage of 0.25 ML, the adsorbed pyridine molecules form a perfectly ordered monolayer. The entire Ge substrate underlying this organic monolayer rearranges into the c(4 x 2) structure.  相似文献   

13.
Pyridine containing water clusters, H(+)(pyridine)(m)(H(2)O)(n), have been studied both experimentally by a quadrupole time-of-flight mass spectrometer and by quantum chemical calculations. In the experiments, H(+)(pyridine)(m)(H(2)O)(n) with m = 1-4 and n = 0-80 are observed. For the cluster distributions observed, there are no magic numbers, neither in the abundance spectra, nor in the evaporation spectra from size selected clusters. Experiments with size-selected clusters H(+)(pyridine)(m)(H(2)O)(n), with m = 0-3, reacting with D(2)O at a center-of-mass energy of 0.1 eV were also performed. The cross-sections for H/D isotope exchange depend mainly on the number of water molecules in the cluster and not on the number of pyridine molecules. Clusters having only one pyridine molecule undergo D(2)O/H(2)O ligand exchange, while H(+)(pyridine)(m)(H(2)O)(n), with m = 2, 3, exhibit significant H/D scrambling. These results are rationalized by quantum chemical calculations (B3LYP and MP2) for H(+)(pyridine)(1)(H(2)O)(n) and H(+)(pyridine)(2)(H(2)O)(n), with n = 1-6. In clusters containing one pyridine, the water molecules form an interconnected network of hydrogen bonds associated with the pyridinium ion via a single hydrogen bond. For clusters containing two pyridines, the two pyridine molecules are completely separated by the water molecules, with each pyridine being positioned diametrically opposite within the cluster. In agreement with experimental observations, these calculations suggest a "see-saw mechanism" for pendular proton transfer between the two pyridines in H(+)(pyridine)(2)(H(2)O)(n) clusters.  相似文献   

14.
Herein, we describe our attempts to systematically prepare a series of oligo(2-thienyl)-substituted pyridine derivatives. The crucial starting material, a β-alkoxy-β-ketoenamide, is easily available on a large scale by the reaction of lithiated methoxyallene with thiophene-2-carbonitrile and thiophene-2-carboxylic acid. This three-component reaction is followed by intramolecular cyclization to yield the suitably functionalized 2,6-di(2-thienyl)-substituted pyridine derivates. The two oxygen atoms allow the programmed activation of positions C-3, C-4, or C-5 of the pyridine ring to perform palladium-catalyzed coupling reactions with thiophene-2-boronic acid or 2-(tributylstannyl)thiophene, and alternatively, reductive removal of groups. With this concept, we were able to prepare five pyridine derivatives with 2-thienyl substituents in the 2,6-, 2,3,6-, 2,4,6-, 2,3,4,6-, and 2,3,5,6-positions. 2,3,4,5,6-Penta(2-thienyl)pyridine was not available with our methods. The UV/Vis and fluorescence spectra of all pyridines were recorded and showed a dependence on the substitution pattern and protonation state. For the protonated 2,3,5,6-tetra(2-thienyl)-substituted pyridine, a Stokes shift of about 180 nm with an emission at 515 nm was observed.  相似文献   

15.
The study of heterodentate molecules adsorbed on metal electrodes provides an opportunity to expand the functionality of modified surfaces while offering insights into the surface and intramolecular electronic interactions of organic adsorbates. The adsorption of 2-(2'-thienyl)pyridine, a molecule containing both pyridine and thiophene moieties, on a Au(111) electrode is reported. Adsorption was characterized by electrochemistry in neutral and basic aqueous electrolyte and was compared to that of pyridine. The aqueous electrochemistry of thiophene on Au(111) was also characterized for comparison purposes. At negative potentials, in the presence of 2-(2'-thienyl)pyridine, a diffuse, pi-bonded monolayer was formed, and a phase transition to a close-packed N- and/or S-bonded configuration was observed near -0.4 V in a 1 mM solution of adsorbate, similar to that seen in pyridine on Au(111). The thiophene-like oxidative dimerization of the molecule was confirmed at positive potentials using in situ fluorescence microscopy by comparison with the spectrum of the chemically synthesized dimer.  相似文献   

16.
Coupling reactions of CO(2) and epoxide to produce cyclic carbonates were performed in the presence of a catalyst [L(2)ZnX(2)] (L=pyridine or substituted pyridine; X=Cl, Br, I), and the effects of pyridine and halide ligands on the catalytic activity were investigated. The catalysts with electron-donating substituents on pyridine ligands exhibit higher activity than those with unsubstituted pyridine ligands. On the other hand, the catalysts with electron-withdrawing substituents at the 2-position of the pyridine ligands show no activity; this demonstrates the importance of the basicity of the pyridine ligands. The catalytic activity of [L(2)ZnX(2)] was found to decrease with increasing electronegativity of the halide ligands. A series of highly active zinc complexes bridged by pyridinium alkoxy ions of the general formula [((mu-OCHRCH(2)L)ZnBr(2))(n)] (n=2 for R=CH(3); n=3 for R=H; L=pyridine or substituted pyridine) were synthesized and characterized by X-ray crystallography. The dinuclear zinc complexes obtained from propylene oxide adopt a square-planar geometry for the Zn(2)O(2) core with two bridging pyridinium propoxy ion ligands. Trinuclear zinc complexes prepared from ethylene oxide adopt a boat geometry for the Zn(3)O(3) core, in which three zinc and three oxygen atoms are arranged in an alternate fashion. These zinc complexes bridged by pyridinium alkoxy ions were also isolated from the coupling reactions of CO(2) and epoxides performed in the presence of [L(2)ZnBr(2)]. Rapid CO(2) insertion into the zincbond;oxygen bond of the zinc complexes bridged by pyridinium alkoxy ions leads to the formation of zinc carbonate species; these which yield cyclic carbonates and zinc complexes bridged by pyridinium alkoxy ions upon interaction with epoxides. The mechanistic pathways for the formation of active species and cyclic carbonates are discussed on the basis of results from structural and spectroscopic analyses.  相似文献   

17.
M. Mallet  G. Quéguiner 《Tetrahedron》1979,35(13):1625-1631
The reaction of n-butyllithium with 2-bromo-3-chloro pyridine as a function of temperature, the amount of n-butyllithium used and the order of introduction of the reagents, gives, besides bromine-lithium exchange, an unexpected métallation of the pyridine ring and bromine migration from the 3 to 4 position. A novel mechanism to explain this and the similar behavior of 3-bromo-2-fluoro pyridine with n-butyllithium is proposed.  相似文献   

18.
The Pariser-Parr-Pople approximation was used to predict the properties of compounds I, 3-oxo-2H-1,2,3-triazolo[3,4-a]pyridine, and II, 3-oxoisoxazolo[2,3-a]pyridine, originated by joining a pyridine ring to two sydnone-like heterocyclic systems not yet reported in the literature. A parallel computation was carried out for two known compounds of similar structure, to give the predictions a better reliability through the comparison with observed spectral data and chemical behaviour. Compound I is expected to be stable, with an absorption spectrum similar to III, 2-oxo-1,3,4-oxadiazolo[4,5-a]pyridine, and chemical properties analogous to IV, 1-methyl-3-oxo-1,2,4-triazolo-[4,3-a]pyridine. A reaction path is suggested for obtaining from I the unknown isomeric structure V, 3-oxo-1H-1,2,3-triazolo[3,4-a]pyridine. Compound II is predicted as an unstable orange-red substance which should be handled and kept at low temperatures.  相似文献   

19.
There are only two dediazoniation products of benzenediazonium tetrafluoroborate in 2,2,2-trifluoroethanol (TFE), namely phenyl 2,2,2-trifluoroethyl ether ( 1 ) and fluorobenzene ( 2 ). The reaction kinetics are strictly first-order with respect to the diazonium salt. The addition of increasing amounts of pyridine to the system results in a gradual decrease in the yields of 1 and 2 and an increase in the yields of the homolytically formed products, benzene ( 3 ), biphenyl ( 4 ), isomeric phenylpyridines ( 5 ) and diazo tar ( 6 ). The reaction kinetics show that the rate of dediazoniation of the benzene diazonium salt increases with increasing amounts of pyridine. The reaction with added pyridine is no longer first-order with respect to the diazonium ion. The product analyses and the kinetic data are consistent with the view that in pure TFE this diazonium salt decomposes completely by a heterolytic mechanism. The addition of pyridine brings about a competitive homolytic mechanism which becomes increasingly dominant as the concentration of pyridine increases.  相似文献   

20.
Selective preparation of pyridine derivatives from two different alkynes and a nitrile was achieved by a novel procedure in which an alkyne and a nitrile couple first to give an azazirconacyclopentadiene followed by reaction with the second alkyne in the presence of 1 equiv of NiCl(2)(PPh(3))(2). This procedure gives only single products of pyridine derivatives from two different symmetrical alkynes and a nitrile. Our novel procedure can be used even with two similar alkyl-substituted alkynes such as 3-hexyne and 4-octyne. Two possible pyridine isomers from 3-hexyne, 4-octyne, and acetonitrile could be completely and independently prepared as single products by this method. The origin of the selectivity comes from the addition order of two different alkynes. This method was applied for the formation of pyridones and iminopyridines using isocyanate and carbodiimide derivatives instead of nitriles, respectively. Reaction of an alkyne with Cp(2)ZrEt(2) and an isocyanate or a carbodiimide gives an azazirconacycle. Treatment of the azazirconacycle with the second alkyne in the presence of 1 equiv of NiCl(2)(PPh(3))(2) gave a pyridone or an iminopyridine derivative. The use of two different unsymmetrical alkynes afforded the pyridine with five different substituents when the first alkyne has a trialkylsilyl group and the second alkyne has a phenyl group as functional groups. On the other hand, azazirconacyclopentadienes reacted with propargyl bromide in the presence of CuCl with excellent regioselectivity to give tetrasubstituted pyridine derivatives as single products. With the assistance of the trialkylsilyl groups, pyridines with all different substituents including H were also prepared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号