首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
采用真空共蒸发方法制备了CdSxTe1 -x 多晶薄膜 ,并用原子力显微镜、x射线衍射和光学透过率谱等研究了CdSxTe1 -x多晶薄膜的结构和性质 .结果表明 :薄膜均匀、致密、无微孔 ,当x≥ 0 5时为n型半导体 ,x <0 5时为p型半导体 .CdSxTe1 -x多晶薄膜的光学能隙随x变化 .结合薄膜的晶格常数和光学能隙得到了薄膜发生相变的组分 ,当x<0 2 5时CdSxTe1 -x 多晶薄膜为立方相 ,当x >0 2 5时为六方结构 .退火后结构没有改变 ,能隙减小 .提出了用CdSxTe1 -x多晶薄膜作为缓冲层的新型结构太阳电池 .  相似文献   

2.
CdSxTe1-r多晶薄膜的制备与性质研究   总被引:5,自引:0,他引:5       下载免费PDF全文
采用真空共蒸发方法制备了CdSxTe1-x多晶薄膜,并用原子力显微镜、x射线衍射和光学透过率谱等研究了CdSxTe1-x多晶薄膜的结构和性质.结果表明薄膜均匀、致密、无微孔,当x≥0.5时为n型半导体,x<0.5时为p型半导体.CdSxTe1-x多晶薄膜的光学能隙随x变化.结合薄膜的晶格常数和光学能隙得到了薄膜发生相变的组分,当x<0.25时CdSxTe1-x多晶薄膜为立方相,当x>0.25时为六方结构.退火后结构没有改变,能隙减小.提出了用CdSxTe1-x多晶薄膜作为缓冲层的新型结构太阳电池.  相似文献   

3.
余亮  梁齐  刘磊  马明杰  史成武 《发光学报》2015,36(4):429-436
利用射频磁控溅射法在玻璃衬底上制备SnS薄膜,用X射线衍射(XRD)、能谱仪(EDS)、原子力显微镜(AFM)、场发射扫描电镜(FE-SEM)和紫外-可见-近红外分光光度计(UV-Vis-NIR)分别对所制备的薄膜晶体结构、组分、表面形貌、厚度、反射率和透过率进行表征分析。研究结果表明:薄膜厚度的增加有利于改善薄膜的结晶质量和组分配比,晶粒尺寸和颗粒尺寸随着厚度的增加而变大。样品的折射率在1 500~2 500 nm波长范围内随着薄膜厚度的增加而增大。样品在可见光区域吸收强烈,吸收系数达105 cm-1量级。禁带宽度在薄膜厚度增加到1 042 nm时为1.57 eV,接近于太阳电池材料的的最佳光学带隙(1.5 eV)。  相似文献   

4.
曾昊  高峰  马世红 《物理学报》2008,57(5):3113-3119
利用椭偏光谱法(SE)对Y型花菁染料LB膜在紫外—可见光范围内(λ=2755—8266nm)的光学特性进行了表征,同时得到了该薄膜的光学常量(复介电常数、消光系数、吸收系数、反射系数、折射率等).讨论了LB薄膜对不同频率光的较高吸收特性及其成膜结构之间的关系,对其物理机理给予了解释.此外,采用洛伦兹振子模型对所得的光学参量进行了理论拟合,结果发现:其理论拟合与实验数据符合得非常好. 关键词: Langmuir-Blodgett膜 椭圆偏振光谱法 洛伦兹振子模型  相似文献   

5.
衬底温度对HfO_2薄膜结构和光学性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用直流磁控反应溅射法,分别在室温,200,300,400和500℃下制备了HfO2薄膜。利用X射线衍射(XRD)、椭圆偏振光谱(SE)和紫外可见光谱(UVvis)研究了衬底温度对HfO2薄膜的晶体结构和光学性能的影响。XRD研究结果显示:不同衬底温度下制备的HfO2薄膜均为单斜多晶结构;随衬底温度的升高,(-111)面择优生长更加明显,薄膜中晶粒尺寸增大。SE和UVvis研究结果表明:随衬底温度升高,薄膜折射率增加,光学带隙变小;制备的HfO2薄膜在250~850nm范围内有良好的透过性能,透过率在80%以上。  相似文献   

6.
逯鑫淼  姜来新  吴谊群  王阳 《光学学报》2012,32(11):1131001
采用磁控溅射法制备了不同厚度的锑基铋掺杂薄膜,用X射线衍射(XRD)和透射电子显微镜(TEM)研究了薄膜结构随厚度的变化。利用椭圆偏振法测定了样品薄膜在近红外波段的光学常数与光学带隙,研究了膜厚对样品薄膜光学常数和光学带隙的影响。结果表明,膜厚从7 nm增加至100 nm时,其结构由非晶态转变为晶态。在950~2200 nm波段,不同厚度薄膜样品的折射率在4.6~8.9范围,消光系数在0.6~5.8范围,光学带隙在0.32~0.16 eV范围。随着膜厚的增加,薄膜的折射率和光学带隙减小,而消光系数升高;光学常数在膜厚50 nm时存在临界值,其原因是临界值前后薄膜微观结构变化不同。  相似文献   

7.
李学留  刘丹丹  梁齐  史成武  于永强 《发光学报》2016,37(12):1521-1531
采用射频磁控溅射法溅射SnS_2靶,在玻璃基片上以不同射频功率和氩气压强制备一系列薄膜样品,研究了不同工艺条件对薄膜特性的影响。利用X射线衍射(XRD)和拉曼光谱(Raman)对薄膜样品的晶体结构和物相进行表征分析。利用X射线能量色散谱(EDS)、紫外-可见-近红外分光光度计(UV-Vis-NIR)对SnS_2薄膜的化学组分、光学特性等进行测试,计算或分析了SnS_2薄膜样品的组分原子比、光学常数和光学带隙。结果表明:制备SnS_2薄膜的最佳工艺条件为射频功率60 W、氩气压强0.5 Pa。在该条件下,所制备的SnS_2薄膜沿(001)晶面择优取向生长,可见光透过率和折射率较高,消光系数较小,直接带隙为2.81 e V。在此基础上,进一步制备了n-SnS_2/p-Si异质结器件。器件具有良好的整流特性及弱光伏特性,反向光电流随光照强度的增加而增大。器件的光电导机制是由SnS_2禁带中陷阱中心的指数分布所控制。  相似文献   

8.
采用金属有机分解法(MOD)在石英衬底上沉积了SrTiO3薄膜。所制备的薄膜是晶格常数为a=b=c=3.90?的多晶结构。通过测量190—1100nm波段内的透射光谱,采用包络方法计算了薄膜的光学常数(折射率n和消光系数k)。结果表明,采用MOD方法制备的薄膜的折射率大于采用射频磁控溅射、溶胶—凝胶和化学气相沉积方法制备的薄膜的折射率;薄膜的折射率色散关系满足单振子模型,其中振子强度S0为0.88′1014m-2,振子能量E0为6.40eV;薄膜的禁带宽度为3.68eV。  相似文献   

9.
不同厚度溅射Ag膜的微结构及光学常数研究   总被引:11,自引:3,他引:11  
用直流溅射法在室温Si基片上制备了4.9nm-189.0nm范围内不同厚度的Ag薄膜,并用X射线衍射及反射式椭偏光谱技术对薄膜的微结构和光学常数进行了测试分析。结构分析表明:制备的Ag膜均呈多晶状态,晶体结构仍为面心立方;随膜厚增加薄膜的平均晶粒心潮6.3nm逐渐增大到14.5nm;薄膜晶格常数均比标准值(0.40862nm)稍小,随膜厚增加,薄膜晶格常数由0.40585nm增大到0.40779nm。250nm-830nm光频范围椭偏光谱测量结果表明:与Johnson的厚Ag膜数据相比,我们制备的Ag薄膜光学折射率n总体上均增大,消光系数k变化复杂;在厚度为4.9nm-83.7nm范围内,实验薄膜的光学常数与Johnson数据差别很大,厚度小于33.3nm的实验薄膜k谱线中出现吸收峰,峰位由460nm红移至690nm处,且其对应的峰宽逐渐宽化;当膜厚达到约189nm时,实验薄膜与Johnson光学常数数据已基本趋于一致。  相似文献   

10.
蒋红  金亿鑫  缪国庆  宋航  元光 《发光学报》2003,24(6):632-636
采用金属有机化学气相沉积(MOCVD)法InP衬底上成功地制备了GaxIn1-xAsyP1-y/InP交替生长的分布布喇格反射镜(DBR)结构以及与之相关的四元合金GaxIn1-xAsyP1-y和InP外延层。利用X射线衍射、扫描电子显微镜(SEM)、低温光致发光(PL)光谱等测量手段对材料的物理特性进行了表征。结果表明,在InP衬底上生长的InP外延层和四元合金GaxIn1-xAsyP1-y外延层77K光致发光(PL)谱线半峰全宽(FWHM)分别为9.3meV和32meV,说明形成DBRs结构的交替层均具有良好的光学质量。X射线衍射测量结果表明,四元合金GaxIn1-xAsyP1-y外延层与InP衬底之间的相对晶格失配仅为1×10-3。GaxIn1-xAsyP1-y/InP交替生长的DBR结构每层膜的光学厚度约为λ/4n(λ=1.55/μm)。根据多层膜增反原理计算得出当膜的周期数为23时,反射率可达90%。  相似文献   

11.
CdS:Cu thin films were prepared using a vacuum co-evaporation technique. The Hall measurements indicate that the conductivity characteristic of CdS thin films transformed from highly compensated in as-grown or weakly annealed materials to p-type conductive in strongly annealed materials. X-ray diffraction spectra show that as-deposited thin films were the hexagonal phase of CdS except the presence of copper for high Cu doping and the diffraction peaks of Cu disappeared after annealing. From the X-ray photoelectron spectroscopy we found the ionization of Cu atoms and the formation of an acceptor level. In situ dark conductivity in vacuum as-deposited CdS:Cu was performed in the temperature range between 27 and 250 °C. An abnormal temperature dependence of conductivity was observed in medium and heavily Cu-doped films. The formation of a p-type material at a certain temperature was also studied by the hot probe measurements, which indicates a complex compensation process in the Cu-doped CdS films.  相似文献   

12.
CdS1?xTex thin films were prepared by first producing CdS:In thin films by the spray pyrolysis (SP) technique and then annealing the films in the presence of Te vapor in nitrogen atmosphere. X-ray diffraction (XRD) measurements showed that the films are polycrystalline with mixed (cubic and hexagonal) structure. Transmittance measurements were recorded at room temperature in the wavelength range 400–1100 nm. The first derivative of the absorbance – which was deduced from the transmittance – was calculated and used to find the values of the bandgap energy. The presence of two minima in the first derivative curves was interpreted by the presence of a mixed (hexagonal and cubic) phase in accordance with the XRD measurements. The photoluminescence was recorded at T=60 K and a deconvolution peak fit was performed for each spectrum. The dependence of the PL spectra on the tellurium content of the films is obvious through the number, position and amplitude of the peaks in the different bands.  相似文献   

13.
采用近空间升华法(CSS)在氩/氧气氛中制备了硫化镉(CdS)多晶薄膜.利用XRD,XPS,AFM,UV-VIS光谱和四探针技术等测试和分析手段系统研究了氧对薄膜的成分、结构、光学和电学等性质的影响.结果表明,用近空间升华法制备的CdS薄膜具有六方相结构,膜层致密、均匀,平均晶粒大小约为40 nm,富硫.氧掺入后部分与镉生成氧化镉,并随着氧含量的增加,薄膜的成分有趋于化学计量比的趋势,光学带隙加宽,光暗电导比增加.此外,还利用扫描电镜(SEM)观察了CdS/CdTe断面结合光谱响应(QE)的结果讨论了氧对CdS/CdTe界面互扩散的影响.发现,随着CdS薄膜制备气氛中氧分压的升高,CdS/CdTe界面的互扩散程度降低,有利于提高器件在500—600 nm波长范围内的光谱响应.认为,氧含量的增加不但使CdS薄膜在光伏应用方面的质量得到改善,而且CdTe太阳电池器件中的CdS/CdTe界面也得到了优化. 关键词: CdS多晶薄膜 近空间升华法 窗口层 界面  相似文献   

14.
Nanocrystalline thin films of CdS have been grown onto flexible plastic and titanium substrates by a simple and environmentally benign chemical bath deposition (CBD) method at room temperature. The films consist of clusters of CdS nanoparticles. The clusters of CdS nanoparticles in the films were successfully converted into nanowire (NW) networks using chemical etching process. The possible mechanism of the etching phenomenon is discussed. These films were examined for their structural, surface morphological and optical properties by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and UV-vis spectrophotometry techniques, respectively. Photoelectrochemical (PEC) investigations were carried out using cell configuration as n-CdS/(1 M NaOH + 1 M Na2S + 1 M S)/C. The film of nanowires was found to be hexagonal in structure with the preferential orientation along the (0 0 2) plane. The nanowires have widths in the range of 50-150 nm and have lengths of the order of a few micrometers. Optical studies reveal that the CdS nanowires have value of band gap 2.48 eV, whereas it is 2.58 eV for nanoparticles of CdS. Finally, we report on the ideality of junction improvement of PEC cells when CdS nanoparticles photoelectrode converted into nanowires photoelectrode.  相似文献   

15.
CdS thin films were grown by fast evaporation technique combined with substrate rotation. The source evaporation temperature was maintained at 600 °C and the substrate temperature at 350 °C with background pressure of 1.0 m Torr. The substrates were corning glass 2947 with dimension of 1 in. × 1 in. rotate at 500 rpm during the growth. In order to verify the quality of the CdS films, the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical measurements. The films shown a flat uniformity thickness with growth rate of ∼3.5 nm/s, the orientation was in the cubic-(1 1 1) and hexagonal-(0 0 2) plane in dependence of the growth time, grain size ∼5 nm, roughness uniformity ∼2.7 nm, transmittance in the visible region spectrum ∼80%, energy band gap between 2.39 and 2.42 eV and short circuit photocurrent density (JSC) losses in the CdS films of 4.7 mA/cm2.  相似文献   

16.
Nanocrystalline CuIn3Se5 thin films have been grown on ITO glass substrates using chemical ion exchange reactions with CdS, in alkaline medium at pH 11. The as-deposited films were annealed in air at 200 °C for 30 min and characterized using X-ray diffraction (XRD), transmission electron microscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and scanning electron microscopy to study the structural, compositional and morphological properties. The XRD patterns reveal the nanoparticles size to be of 18-20 nm diameter, while from the SEM images the nanoparticles size is estimated to be 20-30 nm. It is observed that the annealed films contain nanocrystallites connected with each other through grain boundaries, with grain size of about 100-125 nm and have an overall n-type electrical conductivity and higher photoconductivity. The current-voltage (I-V) characteristics (in dark and light) of these films indicated the formation of a Schottky like junction between the n-CuIn3Se5 (OVC) and CdS/ITO layers.  相似文献   

17.
Improvement of the optical and electrical characteristics is essential to get advanced performance from one dimensional (1D) material. Here, we report the first synthesis of a single crystalline Te-doped CdS nanowires (NWs) by a chemical-vapor-deposition (CVD) method. Room temperature photoluminescence (PL) spectra showed that Te concentration plays an important role in tuning emission color from orange to infrared (IR). Decrease in bandgap and PL intensity with increase in Te concentration was observed as compared to undoped CdS NWs. Red and IR emissions were found at 736.5 and 881 nm for doping concentration >6.06%. To our best knowledge, IR emission band has been observed for the first time in CdS NWs. Red-shift of LO phonon mode and its overtone in Raman spectra, and lifetime of red and IR emissions are longer than bandgap of host indicating the doping effect of CdS NWs. Energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) of the Te-doped CdS NWs further confirms the presence of Te in the CdS NWs. Output characteristics confirm enhanced output current Ids with the increase in doping concentration. A possible growth mechanism was proposed. Doping technique offers to develop high-quality, a very stable, effective, and easily-applicable way to enhance the performance of one dimensional optoelectronic devices and solar cell applications.  相似文献   

18.
Solution Growth Technique (SGT) has been used for deposition of Zn1−xCdS nanocrystalline thin films. Various parameters such as solution pH (10.4), deposition time, concentration of ions, composition and deposition and annealing temperatures have been optimized for the development of device grade thin film. In order to achieve uniformity and adhesiveness of thin film on glass substrate, 5 ml triethanolamine (TEA) have been added in deposition solution. The as-deposited films have been annealed in Rapid Thermal Annealing (RTA) system at various temperature ranges from 100 to 500 °C in air. The changes in structural formation and optical transport phenomena have been studied with annealing temperatures and composition value (x). As-deposited films have two phases of ZnS and CdS, which were confirmed by X-ray diffraction studies; further the X-ray analysis of annealed (380 °C) films indicates that the films have nanocrystalline size (150 nm) and crystal structure depends on the films stoichiometry and annealing temperatures. The Zn0.4CdS films annealed at 380 °C in air for 5 min have hexagonal structure where as films annealed at 500 °C have represented the oxide phase with hexagonal structure. Optical properties of the films were studied in the wavelength range 350-1000 nm. The optical band gap (Eg=2.94-2.30 eV) decreases with the composition (x) value. The effect of air rapid annealing on the photoresponse has also been observed on Zn1−xCdS nanocrystal thin films. The Zn1−xCdS thin film has higher photosensitivity at higher annealing temperatures (380-500 °C), and films also have mixed Zn1−xCdS/Zn1−xCdSO phase with larger grain size than the as-deposited and films annealed up to 380 °C. The present results are well agreed with the results of other studies.  相似文献   

19.
A novel technique for growth of high quality Cu2ZnSnSe4 (CZTSe) thin films is reported in our work. The CZTSe thin films were fabricated onto Mo layers by co-electroplating Cu-Zn-Sn precursors followed by annealing in the selenium vapors at the substrate temperature of 550 °C. The morphology and structure of CZTSe thin films were characterized using scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and Raman scattering spectrum, respectively. The results revealed that the single phase was in the CZTSe thin films, and the other impurities such as ZnSe and Cu2SnSe3 were not existed though they were difficult to distinguish both from EDS and XRD.  相似文献   

20.
In the present paper photoelectrochemical (PEC) performance of bath deposited CdS thin films based on complexing agents i.e. ammonia and triethanolamine (TEA) has been discussed. Effect of annealing has also been analyzed. The as-deposited and annealed (at 523 K for 1 h in air) films were characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-vis) absorption spectroscopy, SEM, electrochemical impedance spectroscopy (EIS), and PEC properties. XRD studies revealed that the films were nanocrystalline in nature with mixed hexagonal and cubic phases. TEA complex resulted in better crystallinity. Further improvement in the crystallinity of the films was observed after air annealing. The marigold flower-like structure, in addition to flakes morphology, was observed with TEA complex, whereas for ammonia complex only flakes morphology was observed. The UV-vis absorption studies revealed that the optical absorption edge for the films with ammonia and TEA complex was around 475 nm and 500 nm, respectively. Annealing of the films resulted in red shift in the UV-vis absorption. The PEC cell performance of CdS films was found to be strongly affected by crystallinity and morphology of the films resulted due to complexing agent and annealing. The air annealed film deposited using TEA complex showed maximum short circuit current density (Jsc) and open circuit voltage (Voc) i.e. 99 μA/cm2 and 376 mV respectively, under 10 mW/cm2 of illumination. The films deposited using TEA complex showed good stability under PEC cell conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号