首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Penny-shaped crack in transversely isotropic piezoelectric materials   总被引:2,自引:0,他引:2  
Using a method of potential functions introduced successively to integrate the field equations of three-dimensional problems for transversely isotropic piezoelectric materials, we obtain the so-called general solution in which the displacement components and electric potential functions are represented by a singular function satisfying some special partial differential equations of 6th order. In order to analyse the mechanical-electric coupling behaviour of penny-shaped crack for above materials, another form of the general solution is obtained under cylindrical coordinate system by introducing three quasi-harmonic functions into the general equations obtained above. It is shown that both the two forms of the general solutions are complete. Furthermore, the mechanical-electric coupling behaviour of penny-shaped crack in transversely isotropic piezoelectric media is analysed under axisymmetric tensile loading case, and the crack-tip stress field and electric displacement field are obtained. The results show that the stress and the electric displacement components near the crack tip have (r −1/2) singularity. The project supported by the Natural Science Foundation of Shaanxi Province, China  相似文献   

2.
A new experimental technique for accelerated fatigue crack growth tests was recently developed (Du et al., 2001). The technique, which uses piezoelectric actuators, enables application of cyclic loading at frequencies several orders higher than that by mechanical loading. However, the validity of this technique relies on the equivalence between piezoelectric and mechanical loading. In this paper, the behavior of an interfacial crack between a piezoelectric material and an elastic material under in-plane electric loading is studied. The displacement mismatch along a bonded interface due to electric potential loading on the piezoelectric material is modeled by inserting an array of uniformly distributed dislocations along the interface. By means of Fourier transformation methods, the governing equations are converted to an integral equation, which is then converted to a standard Hilbert problem. A closed form solution for stresses, electric field, and electric displacements along the bonded interface is obtained. The results agree very well with those obtained from numerical simulations. The results show that the closed form solution is accurate not only for far field distributions of stresses and electric variables, but also for the asymptotic distributions near the crack tip. The solution also suggests the likelihood of domain switching in the piezoelectric material near the crack tip, a process that may influence the interfacial fracture resistance.  相似文献   

3.
The weight function in fracture mechanics is the stress intensity factor at the tip of a crack in an elastic material due to a point load at an arbitrary location in the body containing the crack. For a piezoelectric material, this definition is extended to include the effect of point charges and the presence of an electric displacement intensity factor at the tip of the crack. Thus, the weight function permits the calculation of the crack tip intensity factors for an arbitrary distribution of applied loads and imposed electric charges. In this paper, the weight function for calculating the stress and electric displacement intensity factors for cracks in piezoelectric materials is formulated from Maxwell relationships among the energy release rate, the physical displacements and the electric potential as dependent variables and the applied loads and electric charges as independent variables. These Maxwell relationships arise as a result of an electric enthalpy for the body that can be formulated in terms of the applied loads and imposed electric charges. An electric enthalpy for a body containing an electrically impermeable crack can then be stated that accounts for the presence of loads and charges for a problem that has been solved previously plus the loads and charges associated with an unsolved problem for which the stress and electric displacement intensity factors are to be found. Differentiation of the electric enthalpy twice with respect to the applied loads (or imposed charges) and with respect to the crack length gives rise to Maxwell relationships for the derivative of the crack tip energy release rate with respect to the applied loads (or imposed charges) of the unsolved problem equal to the derivative of the physical displacements (or the electric potential) of the solved problem with respect to the crack length. The Irwin relationship for the crack tip energy release rate in terms of the crack tip intensity factors then allows the intensity factors for the unsolved problem to be formulated, thereby giving the desired weight function. The results are used to derive the weight function for an electrically impermeable Griffith crack in an infinite piezoelectric body, thereby giving the stress intensity factors and the electric displacement intensity factor due to a point load and a point charge anywhere in an infinite piezoelectric body. The use of the weight function to compute the electric displacement factor for an electrically permeable crack is then presented. Explicit results based on a previous analysis are given for a Griffith crack in an infinite body of PZT-5H poled orthogonally to the crack surfaces.  相似文献   

4.
Based on linear three-dimensional piezoelasticity, the Legendre orthogonal polynomial series expansion approach is used for determining the wave characteristics in hollow cylinders composed of the functionally graded piezoelectric materials (FGPM) with open circuit. The displacement and electric potential components, expanded in a series of Legendre polynomials, are introduced into the governing equations along with position-dependent material constants so that the solution of the wave equation is reduced to an eigenvalue problem. Dispersion curves for FGPM and the corresponding non-piezoelectric hollow cylinders are calculated to show the piezoelectric effect. The influence of the ratio of radius to thickness is discussed. Electric potential and displacement distributions are used to show the piezoelectric effect on the flexural torsional mode. The influence of the polarizing direction on the piezoelectric effect is illustrated. For the radial and axial polarization, the piezoelectric effect reacts mostly on the longitudinal mode. For circumferential polarization, the piezoelectric effect reacts mostly on the torsional mode. In the FGPM hollow cylinder, piezoelectricity can weaken the guided wave dispersion.  相似文献   

5.
The assumptions of impermeable and permeable cracks give rise to significant errors in determining electro-elastic behavior of a cracked piezoelectric material. The former simply imposes that the permittivity or electric displacement of the crack interior vanishes, and the latter neglects also the effects of the dielectric of an opening crack interior. Considering the presence of the dielectric of an opening crack interior and the permeability of the crack surfaces for electric field, this paper analyzes electro-elastic behavior induced by a penny-shaped dielectric crack in a piezoelectric ceramic layer. In the cases of prescribed displacement or prescribed stress at the layer surfaces, the Hankel transform technique is employed to reduce the problem to Fredholm integral equations with a parameter dependent nonlinearly on the unknown functions. For an infinite piezoelectric space, a closed-form solution can be derived explicitly, while for a piezoelectric layer, an iterative technique is suggested to solve the resulting nonlinear equations. Field intensity factors are obtained in terms of the solution of the equations. Numerical results of the crack opening displacement intensity factors are presented for a cracked PZT-5H layer and the effect of applied electric field on crack growth are examined for both cases. The results indicate that the fracture toughness of a piezoelectric ceramic is affected by the direction of applied electric fields, dependent on the elastic boundary conditions.  相似文献   

6.
Discussed is the fracture behavior of a cracked smart actuator on a substrate under thermal load. The actuator is made of piezoelectric material with functionally graded material (FGM) properties. Integral transform method is used to reduce the problem to the solution of a set of singular integral equations and is solved numerically. This paper is completed by including graphical plots of the thermal flow, stress and electric displacement intensity factors around the crack for different crack positions and material gradients. Directions of crack initiation are also predicted by using the energy density criterion.  相似文献   

7.
The Saint–Venant torsional problem for homogeneous, monoclinic piezoelectric beams is formulated in terms of Prandtl’s stress function and electric displacement potential function. The analytical approach presented in this paper generalizes the known formulation of Prandtl’s solution which refers to homogeneous elastic beams. The Prandtl’s stress function and electric displacement potential function satisfy the so called coupled Dirichlet problem (CDP) in the cross-sectional domain. A direct and a variational formulation are developed. Exact analytical solutions for solid elliptical cross-section and hollow circular cross-section and an approximate solution based on a variational formulation for thin-walled closed cross-section are presented.  相似文献   

8.
采用了在径向极化情况下横观各向同性的线性本构关系,考虑了材料性质沿径向的梯度分布,对功能梯度压电材料圆环在给定的位移和电势边界条件下,导出了问题的一般解.推导了外壁固定、接地,内壁沿垂向有一微小位移、电势为反对称分布问题的解析解,并计算了该问题在位移和电势作用情况下的位移、电势在不同梯度分布时的数值结果.  相似文献   

9.
用压电材料进行损伤鉴别的理论与数值分析   总被引:1,自引:0,他引:1  
对压电材料用于损伤监测的理论和数值分析做了一些研究。首先,设计了一种用压电材料进行损伤监测的模型。然后,对这个模型进行分析,找出简单有效的解答办法,将求解过程分解为断裂力学分析和压电分析两部分,并通过适当的假设,进行了详细的理论推导。通过正电有限元程序进行仿真计算,将数值计算结果与理论解进行比较以验证提出理论的正确性,并分析得到了裂纹参数与压电层表面电势变化之间的关系和普通弹性材料泊松比对波峰参数的影响。最后,用提出的方法验算了两个例题。从结果来看,理论结果和数值结果非常接近。  相似文献   

10.
The solution of a 3-D rectangular permeable crack in a piezoelectric/piezomagnetic composite material was investigated by using the generalized Almansi’s theorem and the Schmidt method.The problem was formulated through Fourier transform into three pairs of dual integral equations,in which the unknown variables are the displacement jumps across the crack surfaces.To solve the dual integral equations,the displacement jumps across the crack surfaces were directly expanded as a series of Jacobi polynomials.Finally,the relations between the electric filed,the magnetic flux field and the stress field near the crack edges were obtained and the efects of the shape of the rectangular crack on the stress,the electric displacement and magnetic flux intensity factors in a piezoelectric/piezomagnetic composite material were analyzed.  相似文献   

11.
Zhou  Zhen-Gong  Sun  Yu-Guo  Wang  Biao 《Meccanica》2004,39(1):63-76
In this paper, the dynamic behavior of a Griffith crack in a piezoelectric material strip subjected to the harmonic anti-plane shear waves is investigated by use of the non-local theory for impermeable crack surface conditions. To overcome the mathematical difficulties, a one-dimensional non-local kernel is used instead of a two-dimensional one for the anti-plane dynamic problem to obtain the stress and the electric displacement near at the crack tip. By means of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations. These equations are solved using the Schmidt method. Contrary to the classical solution, it is found that no stress and electric displacement singularity is present near the crack tip. The non-local dynamic elastic solutions yield a finite hoop stress near the crack tip, thus allowing for a fracture criterion based on the maximum dynamic stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the thickness of the strip, the circular frequency of incident wave and the lattice parameter.  相似文献   

12.
宋天舒  李冬 《力学学报》2010,42(6):1219
采用Green函数法研究界面上含圆孔边界径向有限长度裂纹的两半无限压电材料对SH波的散射和裂纹尖端动应力强度因子问题.首先构造出具有半圆型凹陷半空间的位移Green函数和电场Green函数,然后采用裂纹"切割"方法构造孔边裂纹,并根据契合思想和界面上的连接条件建立起求解问题的定解积分方程.最后作为算例,给出了孔边界面裂纹尖端动应力强度因子的计算结果图并进行了讨论.  相似文献   

13.
This paper considers the mode III crack problem in functionally graded piezoelectric materials. The mechanical and the electrical properties of the medium are considered for a class of functional forms for which the equilibrium equations have an analytical solution. The problem is solved by means of singular integral equation technique. Both a single crack and a series of collinear cracks are investigated. The results are plotted to show the effect of the material inhomogeneity on the stress and the electric displacement intensity factors.  相似文献   

14.
非理想界面弹性层/压电柱结构中SH波的传播特性   总被引:1,自引:0,他引:1  
研究了各向同性弹性层与压电柱之间非理想连接时沿周向传播的SH波的频散特性.弹性层表面力学自由;弹性层与压电柱之间应力连续、位移间断.通过求解控制方程,将问题的解用Bessel函数表示,利用界面条件和边界条件得到频散方程,然后对其进行数值求解,分析了界面性态、材料常数和几何尺寸对SH波传播特性的影响.  相似文献   

15.
We consider a piezoelectric body bounded by a cylindrical surface in which all cross sections are of the same geometry. Suppose on the lateral surface the body is loaded in such a way that the stress and electric displacement do not vary along the axial direction. In addition the end of the cylinder is also subjected to forces reducing to bending moments, twisting moment, axial force and electric charge. We follow Lekhnitskii's formalism to characterize the deformation of the considered problem. It is found that, when the solid possesses a material symmetry plane normal to the axial direction, the simplified field equations together with suitably chosen boundary conditions are entirely analogous to those of a generalized torsion problem in anisotropic elasticity. In particular, we show that by setting a linkage between two sets of 21 material constants, any problem in one field can be resolved as another problem in the other area. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
In this paper, a general solution for three-dimensional static piezothermoelastic problems of crystal class 6mm solids is presented. The general solution involves four piezoelastic potential functions and a piezothermoelastic potential function, of which four piezoelastic potential functions are governed by weighted harmonic differential equations. Compared with the general solution given by Ashida et al., in which seven potential functions are introduced, the general solution proposed in the present paper is more rigorously derived. Moreover, it has a simple form and is convenient for application. As an illustrative example, the problem of a pyroelectric half-space subjected to axisymmetric heating is studied. Numerical results of displacements stresses, electric potential and electric displacements are obtained for a cadmium selenide half-space. Thermally induced displacements and stress distribution are compared with those obtained for the same material without piezoelectric and pyroelectric effects. Project supported by the National Natural Science Foundation of China (19872060).  相似文献   

17.
This is part II of the work concerned with finding the stress intensity factors for a circular crack in a solid with piezoelectric behavior. The method of solution involves reducing the problem to a system of hypersingular integral equations by application of the unit concentrated displacement discontinuity and the unit concentrated electric potential discontinuity derived in part I [1]. The near crack border elastic displacement, electric potential, stress and electric displacement are obtained. Stress and electric displacement intensity factors can be expressed in terms of the displacement and the potential discontinuity on the crack surface. Analogy is established between the boundary integral equations for arbitrary shaped cracks in a piezoelectric and elastic medium such that once the stress intensity factors in the piezoelectric medium can be determined directly from that of the elastic medium. Results for the penny-shaped crack are obtained as an example.  相似文献   

18.
The solutions of a 3-D rectangular permeable crack and two 3-D rectangular permeable cracks in a piezoelectric material were investigated by using the generalized Almansi’s theorem and the Schmidt method. The problem was formulated through Fourier transform into three pairs of dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. To solve the dual integral equations, the displacement jumps across the crack surfaces were directly expanded as a series of Jacobi polynomials. Finally, the effects of the shape of the rectangular crack and the distance between two rectangular cracks on the stress and electric displacement intensity factors in a piezoelectric material were analyzed. These results can be used for the strength and the coupling effect evaluation of cracked piezoelectric materials.  相似文献   

19.
In this paper, the basic solution of a mode-I crack in functionally graded piezoelectric materials was investigated by using the generalized Almansi’s theorem. In the analysis, the electric permittivity of air inside the crack were considered. To make the analysis tractable, it was assumed that the shear modulus, piezoelectric constants and dielectric constants vary exponentially with coordinate parallel to the crack. The problem was formulated through Fourier transform into two pairs of dual integral equations, in which the unknown variables are jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displacements across the crack surfaces were directly expanded as a series of Jacobi polynomials. The solution of the present paper shows that the effects of the electric boundary conditions on the electric displacement fields near the crack tips can not be ignored. Simultaneously, the solution of the present paper will revert to a closed form one when the functionally graded parameter equals to zero.  相似文献   

20.
The three-dimensional elasticity solution for static analysis of a functionally graded material (FGM) cylindrical panel with simply supported edges is developed. The modulus of elasticity varies continuously throughout the thickness direction in the form of an exponential function. The panel is bonded with piezoelectric layers. Using Fourier series expansions in the axial and circumferential directions, the state equations are derived. The stress, displacement and electric potential distributions are obtained by solving these state equations. The influences of the material gradient index, applied voltage, and radius to thickness ratio on the static behavior of FGM shell are also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号