首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The layer-by-layer (LBL) assembly of a polypeptide, poly-L-lysine (PLL), with poly(styrenesulfonate) sodium salt (PSS) on flat template-stripped gold (TSG) surfaces precoated with a self-assembled monolayer of alkanethiols terminated with positive (pyridinium), negative (carboxylic acid), and neutral [hexa(ethylene glycol)] groups is investigated. Both the topography and the rate of film thickness growth are found to be strongly dependent on the initial surface foundation layer. LBL assembly of PLL and PSS on patterned TSG surfaces produced by micro contact printing leads to structurally distinct microscale features, including pillars, ridges, and wells, whose height can be controlled with nanometer precision.  相似文献   

2.
3.
Temperature- and pH-sensitive poly(N-isopropylacrylamide)?Cco-acrylic acid (pNIPAm-co-AAc) microgels were deposited on glass substrates coated with polyelectrolyte multilayers composed of the polycation poly(allylamine hydrochloride) (PAH) and the polyanion poly(sodium 4-styrenesulfonate) (PSS). The microgel density and structure of the resultant films were investigated as a function of: (1) the number of PAH/PSS layers (layer thickness); (2) the charge on the outer layer of the polyelectrolyte multilayer film; and (3) the pH of microgel deposition solution. The resultant films were studied by differential interference contrast optical microscopy, atomic force microscopy, and scanning electron microscopy. It was found that the coverage of the microgels on the surface was a complex function of the pH of the deposition solution, the charge on the outer layer of the polyelectrolyte thin film and the PAH/PSS layer thickness; although it appears that microgel charge plays the biggest role in determining the resultant surface coverage.  相似文献   

4.
Multilayer thin films were constructed on polystyrene colloidal particles by depositing alternating layers of poly(allylamine hydrochloride) (PAH) at pH 7.5 and varying composition blends of poly(acrylic acid) (PAA) and poly(styrenesulfonate) (PSS) at pH 3.5. Following the deposition of each layer, microelectrophoresis experiments showed alternating zeta-potentials, suggesting the formation of multilayered films on the particles. Scanning and transmission electron microscopy were used to examine the surface morphology of the colloidal particles, with homogeneous surface coatings apparent for films deposited from PAA/PSS blend solutions containing up to 90 wt % PAA. The colloidal stability of these particles is greater than those coated with individual PAH and PAA layers. In the case of the blend PAA/PSS = 25:75 wt %, up to 20 layers were assembled without compromising the colloidal stability of the dispersion. The results demonstrate that the deposition of layers from PE blend solutions containing a strong and weak PE can be used as a facile method for controlling the surface properties and hence the colloidal stability of core-shell particles, as well as the thickness and morphology of the coatings. Control of these parameters is important for subsequent processing and application of these particles in controlled delivery, photonics, catalytic, and separation applications.  相似文献   

5.
以阳离子化的辣根过氧化物酶 (HRP)和阴离子聚苯乙烯磺酸钠 (PSS)的预混合溶液 ,与阳离子聚电解质聚二甲基二烯丙基氯化铵 (PDDA)通过逐层组装 ,在阴离子化聚对苯二酸乙二酯 (PET)表面构建了多层生物活性膜 .用紫外 可见光谱仪 (UV Vis)和原子力显微镜 (AFM)研究了交替自组装膜的结构和表面形膜 ,并测定了自组装膜的生物催化活性 .结果表明 ,预混合溶液中的PSS与HRP一起沉积在PDDA膜层上组装成 (PSS+HRP)膜层 ,且每层中PSS和HRP的比例一致 ;(PSS +HRP)膜层呈条状分布 ,膜表面较为平整 ;多层膜中的HRP催化H2 O2 与 4 氨基安替比林的显色反应的表观米氏常数为 9 7× 10 - 5mol·L- 1 (相对于H2 O2 底物 ) ,较溶液中 (1 5 2× 10 - 4mol·L- 1 )的小 .  相似文献   

6.
The effect of acyl chloride chemical structure on the ethanol aqueous solution dehydration through the poly(thiol ester amide) thin-film composite membrane prepared by reacting 2-aminoethanethiol (AETH) with trimesoyl chloride (TMC) or succinyl chloride (SCC) on the surface of the modified asymmetric polyacrylonitrile (mPAN) membrane was investigated. SEM/EDX, ATR-FTIR and water contact angle were applied to analyze the S element, chemical structure, and hydrophilicity of the poly(thiol ester amide) active layer of the composite membrane. In order to estimate the variation in the free volume of the poly(thiol ester amide) active layer and correlate that with the pervaporation performance, positron annihilation spectroscopy (PAS) experiments were conducted, in which a variable monoenergy slow positron beam was used. Doppler broadening S parameters of annihilation radiation energy spectra showed a significant variation with the acyl chloride chemical structures of the poly(thiol ester amide) active layers. The S parameters of the AETH–TMC/mPAN thin-film composite membrane were found to be lower than those of the AETH–SCC/mPAN thin-film composite membrane. In the ethanol aqueous solution dehydration, the AETH–TMC/mPAN thin-film composite membrane exhibited a lower permeation rate and a higher water concentration in the permeate than the AETH–SCC/mPAN. This is in good agreement with the analysis by positron annihilation spectroscopy. The solution effect dominated the pervaporation separation behavior of the poly(thiol ester amide) thin-film composite membrane with TMC substituting for SCC in the poly(thiol ester amide) active layer. The AETH–TMC/mPAN membrane was found to exhibit superior performance compared with some membranes discussed in the literature.  相似文献   

7.
Sun Y  Song D  Bai Y  Wang L  Tian Y  Zhang H 《Analytica chimica acta》2008,624(2):294-300
The conjugates of magnetic beads coupled with an antibody can be trapped on the Au film firmly due to the magnetic force for the immunoassay of a surface plasmon resonance (SPR) biosensor. However, this approach exhibits significant limitations in robustness and sensitivity due to incomplete dissociation of magnetic beads from the Au film. The incorporation of a polyelectrolyte film on the Au surface can prevent the magnetic beads from the direct contact with the Au film. The layer-by-layer assembly of polyelectrolyte was used as spacer between the gold surface and the magnetic bead. Different layers of polyelectrolyte can be assembled onto the Au film based on an electrostatic force between polycations and polyanions. After the polyelectrolyte film was fabricated on the Au film, the deposition of the magnetic beads was maintained effectively on the film, which favors the sensitivity of the biosensor and the regeneration of the sensing membrane. When the polyelectrolyte layers of (PAH/PSS)3 were constructed on the Au film, the SPR biosensor with magnetic beads exhibited a satisfactory response to human IgG in the concentration range from 0.25 to 30.00 μg mL−1, and the determination limit obtained is eight times lower than that obtained with (PAH/PSS)1 layer.  相似文献   

8.
The sensing sensitivity of wavelength interrogated surface plasmon resonance(WISPR) biosensor is improved by self-assembly of polyelectrolyte multilayer(PEM) film of poly(allylamine hydrochloride)(PAH)/ poly(sodium-p-styrenesulfonate)(PSS) on the Au film coated glass chip via the layer-by-layer(LBL) technique. The home-made WISPR with Krestchmann configuration consists of a tungsten-halogen lamp as a photon source and a charge coupled device(CCD) camera as the detector. The influence of PEM film thickness on the optical properties of WISPR biosensors was investigated theoretically and experimentally. In order to achieve higher sensing sensitivity, the PEM film thickness has to be designed as ca.14 nm at an Au layer thickness of 50 nm and an incidental angle of 11.8°. Furthermore, the PEM coated WISPR biosensor can serve as highly sensitive biosensor, in which the biotin-streptavidin is used as bioconjugate pair. After deposition of the PEM film of (biotin/PAH)(PSS/PAH)3, the modified WISPR biosensor is more sensitive to the low concentration(〈0.01 mg/mL) of streptavidin. And the sensing sensitivity can be further increased by one order of magnitude compared with that of the biotin/PAH coated WISPR biosensor. Thus, such low-cost, high-performance and efficient PEM-coated WISPR biosensors have great potentials in a diverse array of fields such as medical diagnostics, drug screening, food safety analysis, environmental monitoring, and homeland security.  相似文献   

9.
A facile way to prepare free-standing polyelectrolyte multilayer films of poly(sodium 4-styrenesulfonate)(PSS)/poly(diallyldimethylammonium)(PDDA) was developed by applying a new pH-dependent sacrificial system based on cross-linked poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) microgels. The tertiary amine groups of PDMAEMA microgels can be protonated in acidic environment, and the protonated microgels were deposited by layer-by-layer (LbL) technique with PSS. PSS/PDDA multilayer films were constructed on the top of the PSS/microgels sacrificial layers. The LbL assembly process was investigated by UV–vis spectroscopy. Further study shows that the free-standing PSS/PDDA multilayer films can be obtained within 3 min by treating the as-prepared films in alkali aqueous solution with a pH of 12.0. The pH-triggered exfoliation of PSS/PDDA multilayer films provides a simple and facile way to prepare LbL assembled free-standing multilayer films.  相似文献   

10.
The growth, morphology, and interaction/adhesion properties of supported poly(sodium 4-styrenesulfonate)/poly(allylamine hydrochloride) (PSS/PAH) and DNA/PAH multilayers were investigated by means of surface plasmon resonance spectroscopy, atomic force microscope (AFM) imaging, and AFM-related force measurements. Multilayers were assembled on a prelayer of poly(ethylenimine) (PEI) both with and without drying. SPR results showed a linear growth of the assembly in the case of PSS/PAH multilayers and nonlinear growth for DNA/PAH multilayers. Measurements of forces acting between a bare glass sphere and a multilayer-coated surface indicated repulsive or attractive forces, depending on surface charge, which suggests that, on approach, electrostatic forces dominate. On separation, we observed large pull-off forces in the case of positively charged multilayers and weak pull-off forces in the case negatively charged multilayers. Multiple adhesions and plateau regions observed on separation were interpreted in terms of a bridging of multiple polymer chains between the glass particle and the multilayer and a stretching of the polyelectrolyte loops. The dependence of the pull-off force on the number of deposited layers shows regular oscillations.  相似文献   

11.
The heme protein cytochrome c (Cyt-c), immobilized on polyelectrolyte multilayers on a silver electrode, was studied by stationary and time-resolved surface-enhanced resonance Raman (SERR) spectroscopy to probe the redox site structure and the mechanism and dynamics of the potential-dependent interfacial processes. The layers were built up by sequential adsorption of polycations (poly[ethylene imine] (PEI); polyallylamine hydrochloride (PAH)) and polyanions (poly[styrene sulfonate] (PSS)). All multilayers terminated by PSS electrostatically bind Cyt-c. On PEI/PSS coatings, Cyt-c is peripherally bound and fully redox-active. Due to the interfacial potential drop, the apparent redox potential is lowered by 40 mV compared to that in solution. The rate constant for the heterogeneous electron transfer (ET) of ca. 0.1 s(-1) is consistent with electron tunneling through largely ordered PEI/PSS layers. ET is coupled to a reversible conformational transition of Cyt-c that involves a change of the coordination pattern of the heme. Additional (PAH/PSS) double layers cause a broadening of the redox transition and a drastic negative shift of the redox potential, which is attributed to the formation of PSS/Cyt-c complexes. It is concluded that Cyt-c can effectively compete with PAH for binding of PSS, resulting in a rearrangement of the layered structure and a penetration of the PSS-bound Cyt-c into the PAH/PSS double layers. This conclusion is consistent with SERR intensity and quartz microbalance measurements. ET was found to be overpotential-independent and faster than that for PEI/PSS coatings, which is interpreted in terms of specific PSS/Cyt-c complexes serving as gates for the heterogeneous ET.  相似文献   

12.
We report the influence of polyelectrolyte (PE) multilayer films prepared from poly(styrene sulfonate)-poly(acrylic acid) (PSS-PAA) blends, deposited in alternation with poly(allylamine hydrochloride) (PAH), on film wettability and the adsorption behavior of the protein immunoglobulin G (IgG). Variations in the chemical composition of the PAH/(PSS-PAA) multilayer films, controlled by the PSS/PAA blend ratio in the dipping solutions, were used to systematically control film thickness, surface morphology, surface wettability, and IgG adsorption. Spectroscopic ellipsometry measurements indicate that increasing the PSS content in the blend solutions results in a systematic decrease in film thickness. Increasing the PSS content in the blend solutions also leads to a reduction in film surface roughness (as measured by atomic force microscopy), with a corresponding increase in surface hydrophobicity. Advancing contact angles (theta) range from 7 degrees for PAH/PAA films through to 53 degrees for PAH/PSS films. X-ray photoelectron spectroscopy measurements indicate that the increase in film hydrophobicity is due to an increase in PSS concentration at the film surface. In addition, the influence of added electrolyte in the PE solutions was investigated. Adsorption from PE solutions containing added salt favors PSS adsorption and results in more hydrophobic films. The amount of IgG adsorbed on the multilayer films systematically increased on films assembled from blends with increasing PSS content, suggesting strong interactions between PSS in the multilayer films and IgG. Hence, multilayer films prepared from blended PE solutions can be used to tune film thickness and composition, as well as wetting and protein adsorption characteristics.  相似文献   

13.
The polymer micelle, poly[(N-(n-dodecyl)-4-vinylpyridiniumco-N-ethyl-4-vinylpyridinium) bromide], PDE, containing 30% dodecyl groups has been found to promote the adhesion of lipophiles to various surfaces including quartz, polystyrene, and poly(methyl methacrylate) cuvette surfaces from aqueous solutions. The adsorption of PDE/ester coaggregates to the surfaces was studied by hydrolysis of p-nitrophenyl esters in aqueous PDE(30) solutions. The extent of reaction of p-nitrophenyl myristate, an ester with a linear acyl carbon chain length of 14, can be viewed as a probe to study the adhesion of the PDE/ester coaggregates to the cuvette surfaces. The difference between initial concentration of ester and concentration of hydrolysis product, p-nitrophenoxide ion, gives the concentration of unreacted ester in the aggregates or film adhering to the solid surface. Up to 40% of p-nitrophenyl myristate was found unreacted on the surface of quartz cuvettes after apparent completion of the reaction. No adhesion of the related caproate ester with a linear acyl carbon chain length of 6 was detected. Copyright 2000 Academic Press.  相似文献   

14.
We report a templating effect of uniaxially oriented melt-drawn polyethylene (MD-PE) films on α-helical poly(L-lysine)/poly(styrenesulfonate) (α-PLL/PSS) complexes deposited by the layer-by-layer (LBL) method. The melt-drawing process induced an MD-PE fiber texture consisting of nanoscale lamellar crystals embedded in amorphous regions on the MD-PE film surface whereby the common crystallographic c axis is the PE molecular chain direction parallel to the uniaxial melt-drawing direction. The MD-PE film and the α-PLL/PSS deposit were analyzed by atomic force microscopy (AFM) and in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) using polarized light as a complementary method. Both methods revealed that α-PLL/PSS complexes adsorbed at the MD-PE surface were anisotropic and preferentially oriented perpendicular to the crystallographic c direction of the MD-PE film. Quantitatively, from AFM image analysis and ATR-FTIR dichroism of the amide II band of the α-PLL, mean cone opening angles of 12-18° for both rodlike α-PLL and the anisotropic α-PLL/PSS complexes with respect to the PE lamellae width direction were obtained. A model for the preferred alignment of α-PLL along the protruding PE lamellae is discussed, which is based on possible hydrophobic driving forces for the minimization of surface free energy at molecular and supermolecular topographic steps of the PE surface followed by electrostatic interactions between the interconnecting PSS and the α-PLL during layer-by-layer adsorption. This study elucidates the requirements and mechanisms involved in orienting biomolecules and may open up a path for designing templates to induce directed protein adsorption and cell growth by oriented polypeptide- or protein-modified PE surfaces.  相似文献   

15.
Poly(ethylene oxide) (PEO) is a key material in solid polymer electrolytes, biomaterials, drug delivery devices, and sensors. Through the use of hydrogen bonds, layer-by-layer (LBL) assemblies allow for the incorporation of PEO in a controllable tunable thin film, but little is known about the bulk properties of LBL thin films because they are often tightly bound to the substrate of assembly. The construction technique involves alternately exposing a substrate to a hydrogen-bond-donating polymer (poly(acrylic acid)) and a hydrogen-bond-accepting polymer (PEO) in solution, producing mechanically stable interdigitated layers of PEO and poly(acrylic acid) (PAA). Here, we introduce a new method of LBL film isolation using low-energy surfaces that facilitate the removal of substantial mass and area of the film, allowing, for the first time, the thermal and mechanical characterization that was previously difficult or impossible to perform. To further understand the morphology of the nanoscale blend, the glass transition is measured as a function of assembly pH via differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The resulting trends give clues as to how the morphology and composition of a hydrogen-bonded composite film evolve as a function of pH. We also demonstrate that LBL films of PEO and PAA behave as flexible elastomeric blends at ambient conditions and allow for nanoscale control of thickness and film composition. Furthermore, we show that the crystallization of PEO is fully suppressed in these composite assemblies, a fact that proves advantageous for applications such as ultrathin hydrogels, membranes, and solid-state polymer electrolytes.  相似文献   

16.
A facile and efficient approach has been developed to speed up the fabrication of LBL films through sequential dipping in vigorously agitated solutions. By this agitated-dipping (AD) LBL technique, the multilayer films of PAH and PSS were fabricated. The resulting films were explored by UV-vis spectroscopy, X-ray reflectivity, and AFM. Meanwhile, the comparison of the AD and conventional LBL films was made, which demonstrated that AD LBL can decrease dipping time by more than 15 times without reducing film quality remarkably. In addition, to verify the generality of AD LBL, we studied the AD LBL films of PDDA/PSS and PAH/PAA preliminarily as well. AD LBL promotes the efficiency of conventional LBL greatly while preserving its most advantages, such as simplicity, cheapness, precise control, universality in substrates, recycling use of sample solutions, and so on. It would be a promising alternative to build up LBL films rapidly.  相似文献   

17.
Simultaneous spraying of two solutions of interacting species onto a substrate held vertically leads to the formation of nanometer-sized coatings. Here we investigate the simultaneous spraying of poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) solutions leading to the formation of a film composed of PSS/PAH complexes. The thickness of this film increases linearly with the cumulative spraying time. For a given spraying rate of PAH (respectively PSS), the growth rate of the film depends strongly upon the PSS/PAH ratio and passes through a maximum for a PSS/PAH ratio lying between 0.55 and 0.8. For a PSS/PAH ratio that is maintained constant, the growth speed of the film increases linearly with the spraying rate of polyelectrolyte of both solutions. Using X-ray photoelectron spectroscopy, we find that the film composition is almost independent of the PSS/PAH (spayed) ratio, with composition very close to 1:1 in PSS:PAH film. The 1:1 PSS:PAH composition is explained by the fact that the simultaneous spraying experiments are carried out with salt-free solutions; thus, electroneutrality in the film requires exact matching of the charges carried by the polyanions and the polycations. Zeta potential measurements reveal that, depending on whether the PSS/PAH spraying rate ratio lies below or above the optimal spraying rate ratio, the film acquires a positive or a negative excess charge. We also find that the overall film morphology, investigated by AFM, is independent of the spraying rate ratio and appears to be composed of nanometer-sized grains which are typically in the 100 nm range.  相似文献   

18.
Layer-by-layer assembly is presented as a deposition technique for the incorporation of ultrathin gate dielectric layers into thin-film transistors utilizing a highly doped organic active layer. This deposition technique enables the fabrication of device structures with a controllable gate dielectric thickness. In particular, devices with a dielectric layer comprised of poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) bilayer films were fabricated to examine the properties of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as the transistor active layer. The transistor Ion/off ratio and switching speed are shown to be controlled by the gate bias, which is dependent upon the voltage applied and the number of bilayers deposited for the gate dielectric. The devices operate in the depletion mode as a result of dedoping of the active layer with the application of a positive gate bias. The depletion and recovery rate are highly dependent on the level of hydration in the film and the environment under which the device is operated. These observations are consistent with an electrochemical dedoping of the conducting polymer during operation.  相似文献   

19.
We studied the influence of post-treatment rinsing after the formation of self-assembled polyelectrolyte films made with the weak base poly(allylamine hydrochloride) (PAH) and the strong acid poly(styrene sulfonate) (PSS). The stability of the film was studied using optical fixed-angle laser reflectometry to measure the release of polymeric material and AFM experiments to reveal the change of morphology and thickness. We found that the polymer films were stable upon rinsing when the pH was the same in the solution as that used in the buildup (pH 9). The films released most of the polymeric material when rinsed at higher pH values, but a layer remained that corresponded to a PAH monolayer directly bound with the silica surface. Films containing at least four bilayers were stable upon rinsing at lower pH values, but the stability of thinner films depended on the type of the last polymer deposited. They were stable in the case of PSS as an outermost deposit, but they released a large part of their material in the case of PAH. The stability results were determined using a simple model of the step-by-step assembly of the polymer film described formerly.  相似文献   

20.
We report the investigation of surface forces between polyelectrolyte multilayers of poly(allylamine hydrochloride) (PAH) and poly(styrenesulfonate sodium salt) (PSS) assembled on mica surfaces during film buildup using a surface force apparatus. Up to four polyelectrolyte layers were prepared on each surface ex situ, and the surface interactions were measured in 10(-4) M KBr solutions. The film thickness under high compressive loads (above 2000 microN/m) increased linearly with the number of deposited layers. In all cases, the interaction between identical surfaces at large separations (>100 A from contact) was dominated by electrostatic double-layer repulsion. By fitting DLVO theory to the experimental force curves, the apparent double-layer potential of the interacting surfaces was calculated. At shorter separations, an additional non-DLVO repulsion was present due to polyelectrolyte chains extending some distance from the surface into solution, thus generating an electrosteric type of repulsion. Forces between dissimilar multilayers (i.e., one of the multilayers terminated with PSS and the other with PAH) were attractive at large separations (30-400 A) owing to a combination of electrostatic attraction and polyelectrolyte bridging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号