首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文对主链引入型生物降解和光降解乙烯聚合物的研究现状,发展趋势进行了简要的评述。  相似文献   

2.
Smart hydrogels containing 2,2,6,6-tetramethylpiperidinoxy methacrylate (TEMPO) and N-isopropylacrylamide (NIPAM) that undergo reversible redox behavior are prepared and investigated. Several polymer networks are first prepared by free-radical copolymerization of varying amounts of TEMPO, NIPAM, and a crosslinker (diethylene glycol diacrylate) and subsequently swelled with water to lead to hydrogels. In order to investigate the effects of the redox activity of TEMPO units and of the lower critical solution temperature of NIPAM on the hydrogel properties, a study of the swelling ratio of the polymer networks in distilled water at different temperatures is performed for the two forms of TEMPO, the reduced (TEMPO) and oxidized (TEMPO+) one. Moreover, the rheological properties are also measured for both hydrogel forms. Finally, the encapsulation abilities of the oxidized hydrogels are demonstrated via electrostatic interactions between positively charged TEMPO+ units and negatively charged guest molecules, supporting future application of our system in the biomedical and environmental fields.  相似文献   

3.
Thermoresponsive star polymers were synthesized by copolymerization of water-soluble acrylate monomers, di(ethylene glycol) ethyl ether acrylate (DEGA) and 2-hydroxyethyl acrylate (HEA), in a core-first approach using a modified β-cyclodextrin multifunctional initiator and photo-mediated atom transfer radical polymerization (photoATRP). The controlled character of the polymerization, as well as the formation of statistical star copolymers, was demonstrated. The lower critical solution temperature (LCST) is conveniently tuned by varying the ratio of the two hydrophilic monomers. The cyclodextrin core appears to lead to a lowering of the LCST, and introduction of a hydrophobic pocket via star block copolymer synthesis allowed for further tunability of the cloud point temperature. In the final step, we demonstrate that the star polymers made in here can be used as facile carriers and solubilizers for hydrophobic compounds, highlighting their applicability in the biomedical field.  相似文献   

4.
5.
The dendronization of linear polymers by dendrons with different cores and peripheries provides a convenient strategy to fuse distinct properties in one matter. By combining thermoresponsive properties with chirality, a series of doubly dendronized polymers possessing interior chiral proline units and peripheral oligoethylene glycol (OEG)‐based dendrons are synthesized and characterized. The chirality of proline moieties are varied to check potential effects on thermoresponsiveness and chiroptical properties, and the terminal groups in the OEG periphery are changed to tune the hydrophilicity of the resulting polymers. The macromonomer route is applied to obtain polymers with well‐defined structures. Free radical polymerization in bulk results in polymers with surprisingly high molar masses. Their thermally induced phase transition processes are monitored by UV–vis spectroscopy, and chiroptical properties are monitored by optical rotation measurements and circular dichroism spectroscopy. These doubly dendronized polymers show characteristic thermoresponsive behavior, and their phase transition temperatures are dominated by the peripheral structures. Polymerization accompanies weak chiral amplification, but the chirality of the proline interior contributes significantly to the thermal stability of chiroptical properties of the resulting polymers. In vitro cytotoxicity measurements are carried out to check the biocompatibility of these thermoresponsive polymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5143–5152  相似文献   

6.
温敏性聚合物复合体系低临界溶解温度的研究   总被引:1,自引:0,他引:1  
研究了温敏性N-异丙基丙烯酰胺的均聚物(PNIPAm)及其共聚物P(NIPAm-co-KYD)与十六烷基三甲基氯化铵(CTAC)、乙二胺四乙酸(EDTA)、盐等复配体系的低临界溶解温度(LCST)的变化规律。单因素复配体系中,wEDTA为0.1%时,体系LCST从33℃降低到25℃,增大到0.2%时,LCST下降趋于缓慢;wCTAC在0.5%-3.0%范围内,LCST先上升后下降,但wCTAC在0.5%-1.0%内相转变很不明显,超过1.5%后相转变又趋于明显;而无机盐能使体系LCST线性下降;多因素复配体系中LCST变化较缓和,易于控制且相转变现象明显。  相似文献   

7.
The salt effects on the water solubility of thermoresponsive hyperbranched polyethylenimine and polyamidoamine possessing large amounts of isobutyramide terminal groups (HPEI-IBAm and HPAMAM-IBAm) were studied systematically. Eight anions with sodium as the counterion and ten cations with chloride as the counterion were used to measure the anion and cation effects on the cloud point temperature (T(cp)) of these dendritic polymers in water. It was found that the T(cp) of these dendritic polymers was much more sensitive to the addition of salts than that of the traditional thermoresponsive linear polymers. At low anion concentration, the electrostatic interaction between anions and the positively charged groups of these polymers was dominant, resulting in the unusual anion effect on the T(cp) of these polymers in water, including (1) T(cp) of these dendritic polymers decreasing nonlinearly with the increase of kosmotropic anion concentration; (2) the chaotropic anions showing abnormal salting-out property at low salt concentration and the stronger chaotropes having much pronounced salting-out ability; (3) anti-Hofmeister ordering at low salt concentration. At moderate to high salt concentration, the specific ranking of these anions in reducing the T(cp) of HPEI-IBAm and HPAMAM-IBAm polymers was PO(4)(3-) > CO(3)(2-) > SO(4)(2-) > S(2)O(3)(2-) > F(-) > Cl(-) > Br(-) > I(-), in accordance with the well-known Hofmeister series. At moderate to high salt concentration, the specific ranking order of inorganic cations in reducing the T(cp) of HPEI-IBAm polymer was Sr(2+) ≈ Ba(2+) > Na(+) ≈ K(+) ≈ Rb(+) > Cs(+) > NH(4)(+) ≈ Ca(2+) > Li(+) ≈ Mg(2+). This sequence was only partially similar to the typical Hofmeister cation series, whereas at low salt concentration the cation effect on T(cp) of the dendritic polymer was insignificant and no obvious specific ranking order could be found.  相似文献   

8.
The use of soluble thermoresponsive polymers to sequester or scavenge hydrophobic guest molecules from dilute aqueous solutions on heating is described. In these studies, a homopolymer of N‐isopropylacrylamide was shown to sequester 46–83% of a soluble monochlorotriazine from 0.1–10 ppm aqueous solutions when heating above this polymer's lower critical solution temperature (LCST). Substitution of the reactive piperidine‐containing 20:1 copolymer poly(N‐isopropylacrylamide)‐c‐poly[N‐4‐(acrylamidomethyl)piperidine] for this unreactive polymer led to >98% scavenging of these same triazines when heating above this reactive polymer's LCST. The monochlorotriazine guests studied included the herbicide atrazine and two dye‐labeled analogues of this herbicide. In one case, an atrazine analogue was designed so as to contain a dansyl group for fluorescence analysis. In the second case, an atrazine analogue was labeled with a methyl red group to facilitate visual and spectrophotometric analysis. Atrazine concentrations were measured with liquid chromatography–mass spectrometry. The enhanced efficiency of the reactive piperidine‐containing copolymer scavenger in removing triazines from solution is attributed to covalent bond formation by nucleophilic aromatic substitution of the chlorine of the monochlorotriazines by the piperidine nucleophile on the copolymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6309–6317, 2004  相似文献   

9.
Well-defined polymers derived from L-proline are synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization and the amino acid-based polymers exhibit thermosensitive phase separation at lower critical solution temperatures (LCST = 15-45 degrees C) in aqueous medium.  相似文献   

10.
With the combination of molecular scale information from electron paramagnetic resonance (EPR) spectroscopy and meso-/macroscopic information from various other characterization techniques, the formation of mesoglobules of thermoresponsive dendronized polymers is explained. Apparent differences in the EPR spectra in dependence of the heating rate, the chemical nature of the dendritic substructure of the polymer, and the concentration are interpreted to be caused by the formation of a dense polymeric layer at the periphery of the mesoglobule. This skin barrier is formed in a narrow temperature range of ~4 K above T(C) and prohibits the release of molecules that are incorporated in the polymer aggregate. In large mesoglobules, formed at low heating rates and at high polymer concentrations, a considerable amount of water is entrapped that microphase-separates from the collapsed polymer chains at high temperatures. This results in the aggregates possessing an aqueous core and a corona consisting of collapsed polymer chains. A fast heating rate, a low polymer concentration, and hydrophobic subunits in the dendritic polymer side chains make the entrapment of water less favorable and lead to a higher degree of vitrification. This may bear consequences for the design and use of thermoresponsive polymeric systems in the fast growing field of drug delivery.  相似文献   

11.
Core cross-linked star polymers possessing responsiveness to pH and temperature stimuli have been prepared, and we demonstrate how changes to pH and temperature can be used to trigger the release and uptake of a hydrophobic dye.  相似文献   

12.
[structure: see text] The title compounds were synthesized by applying the 1,3-dipolar cycloaddition reaction of aldehyde-based poly(benzyl ether) dendrimers and sarcosine (N-methylglycine) to [60]fullerene (C(60)). The dendritic building blocks used to functionalize C(60) displayed cubic and hexagonal columnar phases. The fullerene derivatives showed rectangular columnar phases of c2mm symmetry.  相似文献   

13.
Blends of biodegradable polymers having properties distinct from the individual polymer components, and that are suitable for use as carriers of pharmaceutically active agents, were prepared from two or more polyanhydrides, polyesters, and mixtures of polyanhydrides and low molecular weight polyesters. The blends have different properties than the original polymers, providing a mean for altering the characteristics of the polymeric matrix without altering the chemical structure of the component polymers. Aliphatic, aromatic, and copolymers of polyanhydrides were miscible in each other and formed less crystalline compositions with a single melting point which was lower than the melting point of the starting polymers. The polyesters: poly(lactide-glycolide), poly(caprolactone), and poly(hydroxybutyric acid) presented some miscibility in each other. However, the polyanhydrides were immiscible with the polyesters resulting in a complete phase separation both in solution or in melt mixing. Only low molecular weight polyesters (in the range of 2000) of lactide and glycolide, mandelic acid, propylenefumarate, and caprolactone presented some miscibility with polyanhydrides. Similarly, poly(orthoester) and hydroxybutyric acid polymers formed a uniform mixture with the anhydride polymers which had the two melting points of the original polymers. Drug release from polymer blends composed of poly(hydroxybutyric acid) or low molecular weight poly(lactic acid) with poly(sebacic anhydride) (PSA) showed a constant release of drug for periods from 2 weeks to several months as a function of the PSA content in the blend. Increasing the content of PSA, a fast degrading polymer, increases the release rate from the blend. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
We report here the synthesis of well‐defined homopolymer bearing amino acid diamide, poly(N‐acryloyl‐L ‐valine N′‐methylamide), via reversible addition fragmentation chain transfer (RAFT) polymerization using alkynyl‐functionalized 2‐dodecylsulfanylthiocarbonylsulfanyl‐2‐methyl‐propionic acid propargyl alcohol ester as chain transfer agent (CTA) and 2,2′‐azobis(isobutyronitrile) as initiator. The effects of a variety of parameters, such as temperature and solvent, on RAFT polymerization were examined to determine the optimal control of the polymerization. The controlled nature of RAFT polymerization was evidenced by the controllable molecular weight and low‐molecular‐weight polydispersity index (Mw/Mn) of resulting homopolymers and further demonstrated to have retained end‐group functionality by the fact of the successful formation of block copolymers from further RAFT polymerization by using the resultant polymer as macro‐CTA, as well as from “click” chemistry. Thermoresponsive property of the prepared polymer was evaluated in terms of the lower critical solution temperature in aqueous solution by measuring the transmittance variation at 500 nm from UV/vis spectroscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3573–3586, 2010  相似文献   

15.
We herein report the preparation of thermo- and redox-responsive branched polymers by the condensation reaction of three-armed oligo(ethylene glycol) (trisOEG) and cystamine (CA). The prepared branched polymers exhibited a soluble–insoluble transition at a lower critical solution temperature (LCST) and formed coacervate droplets through a liquid–liquid phase separation process. We then demonstrated control of the LCSTs of the branched polymers by varying the feed ratio of CA and the surrounding salt concentration close to body temperature. In addition, the trisOEG-cys x polymer formed coacervate droplets above the LCST, in which hydrophobic molecules were condensed. The redox response of the branched polymers was also investigated. Interestingly, the branched polymers degraded to low-molecular-weight materials (i.e., trisOEG) in the presence of dithiothereitol as a reducing agent through cleavage of the disulfide bond of CA. This facile preparation of branched polymers is expected to be valuable in the context of functional biomedical materials and modifiers for materials surfaces, such as the bases for drug delivery carriers and separation materials. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2623–2629  相似文献   

16.
The fatigue resistance of any material is the combined resistance to crack initiation and then to crack propagation. 1) In most of the cases, fillers act as strong cracks initiators. The Fatigue Crack Propagation can, under certain conditions, be improved (glass beads in epoxy) and this can be attributed to the crack front pinning mechanism. This mechanism is mainly governed by interparticle distances. 2) The number of particles per volume unit and thus the interparticles distance seems to be a key factor for endurance resistance. Thus, for a given number of particles per volume unit, the fatigue lifetimes are in good correlation with the FCP data. 3) A very rigid bounding between fillers and matrix is not necessarily good in terms of fatigue lifetime. A rubbery interphase can accommodate the deformation around the particle and thus can avoid a crack nucleation.  相似文献   

17.
The influence of a non-halogenated intumescent fire retardant on the photooxidation of polypropylene is reported. The photooxidation of polypropylene stabilised with a phenolic antioxidant and two redox antioxidants (HALS), without and with the flame retardant has been studied. The chemical modifications resulting from UV-light exposure with wavelengths above 300 nm in the presence of oxygen were followed by IR and UV-visible spectroscopies. Special attention was given to the influence of each component on the rate of oxidation of the polymeric matrix. The photooxidation of the fire-retarded polymer can be described by two independent phenomena: the photooxidation of the intumescent agent and the photooxidation of the polymer. The results obtained offer new insight in the formulation of stabilised fire-retarded PP for outdoors applications.  相似文献   

18.
A novel class of thermoresponsive and reduction‐sensitive polymer, p(PEG‐MEMA‐co‐Boc‐Cyst‐MMAm), containing disulfide linkages and removable hydrophobic tert‐butyloxycarbonyl side chains was synthesized. The cloud points (CP) of p(PEG‐MEMA‐co‐Boc‐Cyst‐MMAm) in water determined by UV/VIS spectrometer were between 20 °C and 57 °C, which shows that the CP can be tuned by adjusting the copolymer composition. Moreover, the thermosensitive polymers p(PEG‐MEMA‐co‐Boc‐Cyst‐MMAm) formed stable nanoparticles in neutral aqueous medium, but rapidly destabilized in an reductive environment mimicking the intracellular space making them suitable for cytoplasmic drug delivery. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5989–5997, 2009  相似文献   

19.
The present study describes the phase behaviour of a low-molar-mass 1,3-diol with a linear alkyl chain in aqueous solution. From the combined results of differential scanning calorimetry and optical polarizing microscopy a phase diagram was constructed. The low-molar-mass diol forms a lamellar mesophase only in the presence of water. The influence of the linkage of the amphiphilic molecule to different polymer backbones on the stability of the mesophase was investigated. It is evident that amphiphilic side-chain polymers show a distinct stabilization of the mesophase. Moreover, comparison between the polyacrylate, polymethacrylate and polysiloxane indicates a strong influence of the main-chain flexibility on the stability of the liquid-crystalline phase. The type of the liquid-crystalline phase of the side-chain polyacrylate in the water-saturated state was identified by X-ray investigations as lamellar. The hydration behaviour of the polymers was investigated by 2H-N.M.R. and isopiestic measurements.  相似文献   

20.
The present study describes the phase behaviour of a low-molar-mass 1,3-diol with a linear alkyl chain in aqueous solution. From the combined results of differential scanning calorimetry and optical polarizing microscopy a phase diagram was constructed. The low-molar-mass diol forms a lamellar mesophase only in the presence of water. The influence of the linkage of the amphiphilic molecule to different polymer backbones on the stability of the mesophase was investigated. It is evident that amphiphilic side-chain polymers show a distinct stabilization of the mesophase. Moreover, comparison between the polyacrylate, polymethacrylate and polysiloxane indicates a strong influence of the main-chain flexibility on the stability of the liquid-crystalline phase. The type of the liquid-crystalline phase of the side-chain polyacrylate in the water-saturated state was identified by X-ray investigations as lamellar. The hydration behaviour of the polymers was investigated by 2H-N.M.R. and isopiestic measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号