首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 304 毫秒
1.
The purpose of this work was to characterise supercritical hydrofluorocarbons (HFC) that can be used as solvents for electrodeposition. The phase behaviour of CHF(3), CH(2)F(2), and CH(2)FCF(3) containing [NBu(n)(4)][BF(4)], [NBu(n)(4)][B{3,5-C(6)H(3)(CF(3))(2)}(4)] and Na[B{3,5-C(6)H(3)(CF(3))(2)}(4)] was studied and the conditions for forming a single supercritical phase established. Although all three HFCs are good solvents for [NBu(n)(4)][BF(4)] the results show that the CH(2)F(2) system has the lowest p(r) for dissolving a given amount of [NBu(n)(4)][BF(4)]. The solubility of Na[B{3,5-C(6)H(3)(CF(3))(2)}(4)] in CH(2)F(2) was found to be unexpectedly high. Studies of the phase behaviour of CH(2)F(2) containing [NBu(n)(4)][BF(4)] and [Cu(CH(3)CN)(4)][BF(4)] showed that the copper complex was unstable in the absence of CH(3)CN. For CHF(3), [Cu(hfac)(2)] was more soluble and more stable than [Cu(CH(3)CN)(4)][BF(4)] and only increased the phase-separation pressure by a moderate amount. Studies of the conductivity of [NBu(n)(4)][B(C(6)F(5))(4)], [NBu(n)(4)][B{3,5-C(6)H(3)(CF(3))(2)}(4)], [NR(f)Bu(n)(3)][B{3,5-C(6)H(3)(CF(3))(2)}(4)] (R(f) = (CH(2))(3)C(7)F(15)), and Na[B{3,5-C(6)H(3)(CF(3))(2)}(4)] were carried out in scCH(2)F(2). The results show that these salts are more conducting than [NBu(n)(4)][BF(4)] under the same conditions although the increase is much less significant than that reported in previous work in supercritical CO(2) + CH(3)CN. Consequently, either [NBu(n)(4)][BF(4)] or the corresponding BARF salts would be suitable background electrolytes for electrodeposition from scCH(2)F(2).  相似文献   

2.
The new [N(CH(3))(4)][WSF(5)] salt was synthesized by two preparative methods: (a) by reaction of WSF(4) with [N(CH(3))(4)][F] in CH(3)CN and (b) directly from WF(6) using the new sulfide-transfer reagent [N(CH(3))(4)][SSi(CH(3))(3)]. The [N(CH(3))(4)][WSF(5)] salt was characterized by Raman, IR, and (19)F NMR spectroscopy and [N(CH(3))(4)][WSF(5)]·CH(3)CN by X-ray crystallography. The reaction of WSF(4) with half an aliquot of [N(CH(3))(4)][F] yielded [N(CH(3))(4)][W(2)S(2)F(9)], which was characterized by Raman and (19)F NMR spectroscopy and by X-ray crystallography. The WSF(5)(-) and W(2)S(2)F(9)(-) anions were studied by density functional theory calculations. The novel [W(2)OSF(9)](-) anion was observed by (19)F NMR spectroscopy in a CH(3)CN solution of WOF(4) and WSF(5)(-), as well as CH(3)CN solutions of WSF(4) and WOF(5)(-).  相似文献   

3.
New metal-containing ionic liquids [Cu(CH(3)CN)(n)][Tf(2)N] (n=2, 4; Tf(2)N=bis(trifluoromethylsulfonyl)- amide) have been synthesised and used as a non-aqueous electrolyte for the electrodeposition of copper at current densities greater than 25 A dm(-2). The tetrahedral copper(I)-containing cation in [Cu(CH(3)CN)(4)][Tf(2)N] is structurally analogous to quaternary ammonium and phosphonium ionic liquids and overcomes problems of metal solubility and mass transport. Two CH(3)CN ligands are removed at elevated temperatures to give [Cu(CH(3)CN)(2)][Tf(2)N], which can be used as a concentrated non-aqueous electrolyte. The structural and electrochemical characterisation of these compounds is described herein.  相似文献   

4.
Unprecedented noradamantane-type compounds [(R(2,3)Ge)(4)Te(5)] (R(2) = CH(2)CH(2)COOH, R(3) = CH(CH(2)COOH)(2)), containing a Ge-Ge bond, yield from reactions of R(2,3)GeCl(3) with Na(2)Te or Li(2)Te in THF, while reactions with R(1)GeCl(3) (R(1) = CMe(2)CH(2)COMe) afford a double-decker-type cage [(R(3)Ge)(4)Te(6)]; by reaction with hydrazine, the latter reacts to the hydrazone functionalized, monomeric anion [(R(4)Ge)Te(2)](-) (R(4) = CMe(2)CH(2)CNNH(2)Me).  相似文献   

5.
Reaction of unsaturated (44e (-) skeleton) [PdPt 2(mu-PPh 2) 2(mu-P 2Ph 4)(R F) 4] 4 with Br (-) produces the saturated (48e (-) skeleton) complex [NBu 4][(R F) 2Pt(mu-PPh 2)(mu-Br)Pd(mu-PPh 2)(mu-P 2Ph 4)Pt(R F) 2] 5 without any M-M' bond. Attempts to eliminate Br (-) of 5 with Ag (+) in CH 2Cl 2 as a solvent gives a mixture of [(R F) 2Pt (III)(mu-PPh 2) 2Pt (III)(R F) 2] and some other unidentified products as a consequence of oxidation and partial fragmentation. However, when the reaction of 5 with Ag (+) is carried out in CH 3CN, no oxidation is observed but the elimination of Br (-) and the formation of [(R F) 2(CH 3CN)Pt(mu-PPh 2)Pd(mu-PPh 2)(mu-P 2Ph 4)Pt(R F) 2] 6 (46e (-) skeleton), a complex with a Pt-Pd bond, takes place. It is noteworthy that the reaction of 5 with TlPF 6 in CH 2Cl 2 does not precipitate TlBr but forms the adduct [(R F) 2PtTl(mu-PPh 2)(mu-Br)Pd(mu-PPh 2)(mu-P 2Ph 4)Pt(R F) 2] 7 with a Pt-Tl bond. Likewise, 5 reacts with [AgOClO 3(PPh 3)] in CH 2Cl 2 forming the adduct [AgPdPt 2(mu-Br)(mu-PPh 2) 2(mu-Ph 2P-PPh 2)(R F) 4(PPh 3)] 8, which contains a Pt-Ag bond. Both adducts are unstable in a CH 3CN solution, precipitating TlBr or AgBr and yielding the unsaturated 6. The treatment of [NBu 4] 2[(R F) 2Pt(mu-PPh 2) 2Pd(mu-PPh 2) 2Pt(R F) 2] in CH 3CN with I 2 (1:1 molar ratio) at 233 K yields a mixture of 4 and 6, which after recrystallization from CH 2Cl 2 is totally converted in 4. If the reaction with I 2 is carried out at room temperature, a mixture of the isomers [NBu 4][(R F) 2Pt(mu-PPh 2)(mu-I)Pd(mu-PPh 2)(mu-P 2Ph 4)Pt(R F) 2] 9 and [NBu 4][(R F)(PPh 2R F)Pt(mu-PPh 2)(mu-I)Pd(mu-PPh 2) 2Pt(R F) 2] 10 are obtained. The structures of the complexes have been established on the bases of NMR data, and the X-ray structures of 5- 8 have been studied. The relationship between the different complexes has been studied.  相似文献   

6.
The electrodeposition of Ge, Si and, for the first time, of Si(x)Ge(1-x) from the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([Py(1,4)]Tf(2)N) containing GeCl(4) and/or SiCl(4) as precursors is investigated by cyclic voltammetry and high-resolution scanning electron microscopy. GeCl(2) in [Py(1,4)]Tf(2)N is electrochemically prepared in a two-compartment cell to be used as Ge precursor instead of GeCl(4) in order to avoid the chemical attack of Ge(iv) on deposited Ge. Silicon, germanium and Si(x)Ge(1-x) can be deposited reproducibly and easily in this ionic liquid. Interestingly, the Si(x)Ge(1-x) deposit showed a strong colour change (from red to blue) at room temperature during electrodeposition, which is likely to be due to a quantum size effect. The observed colours are indicative of band gaps between at least 1.5 and 3.2 eV. The potential of ionic liquids in Si(x)Ge(1-x) electrodeposition is demonstrated.  相似文献   

7.
Novel mixed bis(alkynyl)bis(cyano)platinate(II) species [cis-Pt(Ctbond;CR)(2)(CN)(2)](2-) (1 a: R = tBu, 1 b: R = Ph) have been prepared and their potential as building blocks in the generation of self-organized systems with a variable molecular architecture has been studied. The reaction of 1 with the ditopic acceptor species [[cis-Pt(C(6)F(5))(2)S](2)(dppa)] (dppa=diphenylphosphinoacetylene) gave the dianionic cyanide/dppa bridged molecular platinotriangles (NBu(4))(2)[(C(6)F(5))(2)Pt(micro-dppa)[(micro-CN)(2)Pt(Ctbond;CR)(2)]Pt(C(6)F(5))(2)] (2). X-ray analysis of 2 a confirmed that the "Pt(2)(C(6)F(5))(4)(micro-dppa)" binuclear moiety is connected to the dianionic "Pt(Ctbond;CR)(2)(CN)(2)" unit by two bridging cyanide ligands. Moreover, treatment of 1 with the solvent cationic species [M(cod)(acetone)(2)](+) afforded heterometallic molecular squares Pt(2)M(2) (M=Rh, Ir) containing cyanide bridges and terminal alkynyl ligands, (NBu(4))(2)[cyclo[[cis-Pt(Ctbond;CR)(2)(micro-CN)(2)][M(cod)]](2)] (3: M=Rh, 4: M = Ir). The solid-state structures of phenyl derivatives have been determined by X-ray crystallography. The terminal alkynyl ligands in these cyanide-bridged molecular squares 3 and 4 have been used in the assembly of higher multimetallic complexes. Thus, very unusual bis(double-alkynide)-cyanide-bridged hexametallic compounds (NBu(4))(2)[[(C(6)F(5))(2)Pt(micro-Ctbond;CPh)(2)(micro-CN)(2)](2)[M(cod)](2)] (5 b: M=Rh, 6 b: M = Ir) were easily formed by simple reactions of 3 b and 4 b with two equivalents of [cis-Pt(C(6)F(5))(2)(thf)(2)]. An X-ray diffraction study on complex 5 b indicated that the derivative was formed by a simultaneous migration of one sigma-alkynyl group from each "Pt(Ctbond;CPh)(2)(micro-CN)(2)" corner of the square to both "Pt(C(6)F(5))(2)" units, resulting in bent sigma,pi-double-alkynyl bridging systems. Finally, the novel supramolecular anionic assemblies (NBu(4))(4)[cyclo[[cis-Pt(Ctbond;CR)(2)(micro-CN)(2)][SnPh(3)]](4)] 7 have been obtained by self-assembly of 1 and [SnPh(3)(acetone)(2)](+).  相似文献   

8.
The combination of CH(3)CN solutions of [N(CH(3))(4)][F] and a mixture of cis- and trans-[N(CH(3))(4)][IO(2)F(4)] produces the novel trans-IO(2)F(5)(2)(-) anion. Under the given conditions, only the trans-IO(2)F(4)(-) anion acts as a fluoride ion acceptor, thus allowing the separation of isomerically pure, soluble cis-IO(2)F(4)(-) from insoluble trans-IO(2)F(5)(2)(-). The trans-IO(2)F(5)(2)(-) and cis-IO(2)F(4)(-) anions were characterized by infrared and Raman spectroscopy and theoretical calculations at the LDFT and HF levels of theory. The trans-IO(2)F(5)(2)(-) anion has a pentagonal-bipyramidal geometry with the two oxygen atoms occupying the axial positions. It represents the first example of a heptacoordinated main group AO(2)X(5) species and completes the series of pentagonal-bipyramidal iodine fluoride and oxide fluoride species. The geometries of the pentagonal-bipyramidal series IO(2)F(5)(2)(-), IOF(5)(2)(-), IF(5)(2)(-), IOF(6)(-), IF(6)(-), and IF(7) and the corresponding octahedral series IO(2)F(4)(-), IOF(4)(-), IF(4)(-), IOF(5), IF(5), and IF(6)(+) were calculated by identical methods. It is shown how the ionic charge, the oxidation state of the iodine atom, the coordination number, and the replacement of fluorine ligands by either an oxygen ligand or a free valence electron pair influence the stuctures and bonding of these species.  相似文献   

9.
The treatment of the dimeric paddle-wheel (PW) compound [Mo(2)(NCCH(3))(10)][BF(4)](4)1 with oxalic acid (0.5 equiv.), 1,1-cyclobutanedicarboxylic acid (1 equiv.), 5-hydroxyisophthalic acid (1 equiv.) (m-bdc-OH) or 2,3,5,6-tetrafluoroterephthalic acid (0.5 or 1 equiv.) leads to the formation of macromolecular dicarboxylate-linked (Mo(2))(n) entities (n = 2, 3, 4). The structure of the compounds depends on the length and geometry of the organic linkers. In the case of oxalic acid, the dimeric compound [(CH(3)CN)(8)Mo(2)(OOC-COO)Mo(2)(NCCH(3))(8)][BF(4)](6)2 is formed selectively, whereas the use of 2,3,5,6-tetrafluoroterephthalic acid affords the square-shaped complex [(CH(3)CN)(6)Mo(2)(OOC-C(6)F(4)-COO)](4)[BF(4)](8)3. Bent linkers with a bridging angle of 109° and 120°, respectively, lead to the formation of the molecular loop [(CH(3)CN)(6)Mo(2)(OOC-C(4)H(6)-COO)](2)[BF(4)](4)4 and the bowl-shaped molecular triangle [(CH(3)CN)(6)Mo(2)(m-bdc-OH)](3)[BF(4)](6)5. All complexes are characterised by X-ray single crystal diffraction, NMR ((1)H, (11)B, (13)C and (19)F) and UV-Vis spectroscopy.  相似文献   

10.
The transmetallation of the palladacyclopentadiene complex Pd{C(COOMe)C(COOMe)C(COOMe)C(COOMe)}(bipy) with the dicationic Pd(II) complex [Pd(bipy)(CH(3)CN)(2)][BF(4)](2) afforded a terminally σ-palladated diene complex [Pd(2){μ-η(1):η(1)-C(COOMe)C(COOMe)C(COOMe)C(COOMe)}(bipy)(2)(CH(3)CN)(2)][BF(4)](2). It was revealed by X-ray crystallographic analysis that replacement of the acetonitrile ligands in a terminally σ-palladated diene complex with PPh(3) ligands resulted in the conformation change of the σ-palladated diene moiety from skewed s-cis to planar s-trans. Treatment of a bis-triphenylphosphine dipalladium complex [Pd(2)(PPh(3))(2)(CH(3)CN)(4)][PF(6)](2) with dimethoxyacetylene dicarboxylate (DMAD) (1 equiv.) in acetonitrile resulted in the insertion of DMAD to the Pd-Pd bond to afford [Pd(2){μ-η(1):η(1)-C(COOMe)C(COOMe)}(PPh(3))(2)(CH(3)CN)(4)][PF(6)](2). Addition of the second DMAD gave the ylide-type complex [Pd(2){μ-η(2):η(3)-C(COOMe)C(COOMe)C(COOMe)C(COOMe)(PPh(3))}(PPh(3))(2)(CH(3)CN)(3)][PF(6)](2) of which the structure was determined by X-ray crystallographic analysis.  相似文献   

11.
A series of cyanide-bridged complexes that combine a low-valent photoacceptor rhenium(I) metal center with an electroactive midvalent rhenium(V) complex were prepared. The synthesis involved the preparation of novel asymmetric rhenium(V) oxo compounds, cis-Re(V)O(CN)(acac(2)en) (1) and cis-Re(V)O(CN)(acac(2)pn) (2), formed by reacting trans-[Re(V)O(OH(2))(acac(2)en)]Cl or trans-Re(V)O(acac(2)pn)Cl with [NBu(4)][CN]. The μ-bridged cyanide mixed-oxidation Re(V)-Re(I) complexes were prepared by incubating the asymmetric complexes, 1 or 2, with fac-[Re(I)(bipy)(CO)(3)][OTf] to yield cis-[Re(V)O(acac(2)en)(μ-CN-1κC:2κN)-fac-Re(I)(bipy)(CO)(3)][PF(6)] (3) and [cis-Re(V)O(acac(2)pn)(μ-CN-1κC:2κN)-fac-Re(I)(bipy)(CO)(3)][PF(6)] (4), respectively.  相似文献   

12.
The synthesis and characterisation of a pyridazine-containing two-armed grid ligand L2 (prepared from one equivalent of 3,6-diformylpyridazine and two equivalents of p-anisidine) and the resulting transition metal (Zn, Cu, Ni, Co, Fe, Mn) complexes (1-9) are reported. Single-crystal X-ray structure determinations revealed that the copper(I) complex had self-assembled as a [2 x 2] grid, [Cu(I) (4)(L2)(4)][PF(6)](4).(CH(3)CN)(H(2)O)(CH(3)CH(2)OCH(2)CH(3))(0.25) (2.(CH(3)CN)(H(2)O)(CH(3)CH(2)OCH(2)CH(3))(0.25)), whereas the [Zn(2)(L2)(2)(CH(3)CN)(2)(H(2)O)(2)][ClO(4)](4).CH(3)CN (1.CH(3)CN), [Ni(II) (2)(L2)(2)(CH(3)CN)(4)][BF(4)](4).(CH(3)CH(2)OCH(2)CH(3))(0.25) (5 a.(CH(3)CH(2)OCH(2)CH(3))(0.25)) and [Co(II) (2)(L2)(2)(H(2)O)(2)(CH(3)CN)(2)][ClO(4)](4).(H(2)O)(CH(3)CN)(0.5) (6 a.(H(2)O)(CH(3)CN)(0.5)) complexes adopt a side-by-side architecture; iron(II) forms a monometallic cation binding three L2 ligands, [Fe(II)(L2)(3)][Fe(III)Cl(3)OCl(3)Fe(III)].CH(3)CN (7.CH(3)CN). A more soluble salt of the cation of 7, the diamagnetic complex [Fe(II)(L2)(3)][BF(4)](2).2 H(2)O (8), was prepared, as well as two derivatives of 2, [Cu(I) (2)(L2)(2)(NCS)(2)].H(2)O (3) and [Cu(I) (2)(L2)(NCS)(2)] (4). The manganese complex, [Mn(II) (2)(L2)(2)Cl(4)].3 H(2)O (9), was not structurally characterised, but is proposed to adopt a side-by-side architecture. Variable temperature magnetic susceptibility studies yielded small negative J values for the side-by-side complexes: J=-21.6 cm(-1) and g=2.17 for S=1 dinickel(II) complex [Ni(II) (2)(L2)(2)(H(2)O)(4)][BF(4)](4) (5 b) (fraction monomer 0.02); J=-7.6 cm(-1) and g=2.44 for S= 3/2 dicobalt(II) complex [Co(II) (2)(L2)(2)(H(2)O)(4)][ClO(4)](4) (6 b) (fraction monomer 0.02); J=-3.2 cm(-1) and g=1.95 for S= 5/2 dimanganese(II) complex 9 (fraction monomer 0.02). The double salt, mixed valent iron complex 7.H(2)O gave J=-75 cm(-1) and g=1.81 for the S= 5/2 diiron(III) anion (fraction monomer=0.025). These parameters are lower than normal for Fe(III)OFe(III) species because of fitting of superimposed monomer and dimer susceptibilities arising from trace impurities. The iron(II) centre in 7.H(2)O is low spin and hence diamagnetic, a fact confirmed by the preparation and characterisation of the simple diamagnetic iron(II) complex 8. M?ssbauer measurements at 77 K confirmed that there are two iron sites in 7.H(2)O, a low-spin iron(II) site and a high-spin diiron(III) site. A full electrochemical investigation was undertaken for complexes 1, 2, 5 b, 6 b and 8 and this showed that multiple redox processes are a feature of all of them.  相似文献   

13.
Polychloride monoanions stabilized by quaternary ammonium salts are investigated using Raman spectroscopy and state-of-the-art quantum-chemical calculations. A regular V-shaped pentachloride is characterized for the [N(Me)(4)][Cl(5)] salt, whereas a hockey-stick-like structure is tentatively assigned for [N(Et)(4)][Cl(2)???Cl(3)(-)]. Increasing the size of the cation to the quaternary ammonium salts [NPr(4)](+) and [NBu(4)](+) leads to the formation of the [Cl(3)](-) anion. The latter is found to be a pale yellow liquid at about 40 °C, whereas all the other compounds exist as powders. Further to these observations, the novel [Cl(9)](-) anion is characterized by low-temperature Raman spectroscopy in conjunction with quantum-chemical calculations.  相似文献   

14.
The formation of adducts of tris(pentafluorophenyl)borane with strongly coordinating anions such as CN(-) and [M(CN)(4)](2)(-) (M = Ni, Pd) is a synthetically facile route to the bulky, very weakly coordinating anions [CN[B(C(6)F(5))(3)](2)](-) and [M[CNB(C(6)F(5))(3)](4)](2-) which are isolated as stable NHMe(2)Ph(+) and CPh(3)(+) salts. The crystal structures of [CPh(3)][CN[B(C(6)F(5))(3)](2)] (1), [CPh(3)][ClB(C(6)F(5))(3)] (2), [NHMe(2)Ph](2)[Ni[CNB(C(6)F(5))(3)](4)].2Me(2)CO (4b.2Me(2)CO), [CPh(3)](2)[Ni[CNB(C(6)F(5))(3)](4)].2CH(2)Cl(2) (4c.2CH(2)Cl(2)), and [CPh(3)](2)[Pd[CNB(C(6)F(5))(3)](4)].2CH(2)Cl(2) (5c.2CH(2)Cl(2)) are reported. The CN stretching frequencies in 4 and 5 are shifted by approximately 110 cm(-1) to higher wavenumbers compared to the parent tetracyano complexes in aqueous solution, although the M-C and C-N distances show no significant change on B(C(6)F(5))(3) coordination. Zirconocene dimethyl complexes L(2)ZrMe(2) [L(2) = Cp(2), SBI = rac-Me(2)Si(Ind)(2)] react with 1, 4c or 5c in benzene solution at 20 degrees C to give the salts of binuclear methyl-bridged cations, [(L(2)ZrMe)(2)(mu-Me)][CN[B(C(6)F(5))(3)](2)] and [(L(2)ZrMe)(2)(mu-Me)](2)[M[CNB(C(6)F(5))(3)](4)]. The reactivity of these species in solution was studied in comparison with the known [[(SBI)ZrMe](2)(mu-Me)][B(C(6)F(5))(4)]. While the latter reacts with excess [CPh(3)][B(C(6)F(5))(4)] in benzene to give the mononuclear ion pair [(SBI)ZrMe(+).B(C(6)F(5))(4)(-)] in a pseudo-first-order reaction, k = 3 x 10(-4) s(-1), [(L(2)ZrMe)(2)(mu-Me)][CN[B(C(6)F(5))(3)](2)] reacts to give a mixture of L(2)ZrMe(mu-Me)B(C(6)F(5))(3) and L(2)ZrMe(mu-NC)B(C(6)F(5))(3). Recrystallization of [Cp' '(2)Zr(mu-Me)(2)AlMe(2)][CN[B(C(6)F(5))(3)](2)] affords Cp' '(2)ZrMe(mu-NC)B(C(6)F(5))(3) 6, the X-ray structure of which is reported. The stability of [(L(2)ZrMe)(2)(mu-Me)](+)X(-) decreases in the order X = [B(C(6)F(5))(4)] > [M[CNB(C(6)F(5))(3)](4)] > [CN[B(C(6)F(5))(3)](2)] and increases strongly with the steric bulk of L(2) = Cp(2) < SBI. Activation of (SBI)ZrMe(2) by 1 in the presence of AlBu(i)(3) gives extremely active ethene polymerization catalysts. Polymerization studies at 1-7 bar monomer pressure suggest that these, and by implication most other highly active ethene polymerization catalysts, are strongly mass-transport limited. By contrast, monitoring propene polymerization activities with the systems (SBI)ZrMe(2)/1/AlBu(i)(3) and CGCTiMe(2)/1/AlBu(i)(3) at 20 degrees C as a function of catalyst concentration demonstrates that in these cases mass-transport limitation is absent up to [metal] approximately 2 x 10(-5) mol L(-1). Propene polymerization activities decrease in the order [CN[B(C(6)F(5))(3)](2)](-) > [B(C(6)F(5))(4)](-) > [M[CNB(C(6)F(5))(3)](4)](2-) > [MeB(C(6)F(5))(3)](-), with differences in activation barriers relative to [CN[B(C(6)F(5))(3)](2)](-) of DeltaDeltaG = 1.1 (B(C(6)F(5))(4)(-)), 4.1 (Ni[CNB(C(6)F(5))(3)](4)(2-)) and 10.7-12.8 kJ mol(-)(1) (MeB(C(6)F(5))(3)(-)). The data suggest that even in the case of very bulky anions with delocalized negative charge the displacement of the anion by the monomer must be involved in the rate-limiting step.  相似文献   

15.
First generation fluorous DEAD reagent bis(perfluorohexylethyl)azo dicarboxylate (C(6)F(13)(CH(2))(2)O(2)CN=NCO(2)(CH(2))(2)C(6)F(13), F-DEAD-1) has been shown to underperform relative to diisopropylazodicarboxylate in difficult Mitsunobu reactions involving hindered alcohols or less acidic pronucleophiles (phenols). Two new second generation fluorous reagents bearing propylene spacers instead of the ethylene spacers show expanded reaction scope while retaining the easy fluorous separation features. Byproducts from "half fluorous" reagent perfluorooctylpropyl tert-butyl azo dicarboxylate (C(8)F(17)(CH(2))(3)O(2)CN=NCO2(t)Bu, F-DEAD-2) can be removed by fluorous flash chromatography, and byproducts from bis(perfluorohexylpropyl)azo dicarboxylate (C(6)F(13)(CH(2))(3)O(2)CN=NCO(2)(CH(2))(3)C(6)F(13), F-DEAD-3) can be removed by fluorous solid-phase extraction. The new reagents promise to provide general and complementary solutions for separation problems in Mitsunobu reactions without restricting reaction scope.  相似文献   

16.
The BrO(3)F(2)(-) anion has been prepared by reaction of BrO(3)F with the fluoride ion donors KF, RbF, CsF, [N(CH(3))(4)][F], and NOF. The BrO(3)F(2)(-) anion is only the fourth Br(VII) species to have been isolated in macroscopic quantities, and it is one of only three oxide fluorides that possess D(3)(h)() symmetry, the others being XeO(3)F(2) and OsO(3)F(2). The fluoride ion acceptor properties of BrO(3)F contrast with those of ClO(3)F, which does not react with the strong fluoride ion donor [N(CH(3))(4)][F] to form the analogous ClO(3)F(2)(-) salt. The single-crystal X-ray structures of [NO](2)[BrO(3)F(2)][F] and [N(CH(3))(4)][BrO(3)F(2)] confirm the D(3)(h)() symmetry of the BrO(3)F(2)(-) anion and provide accurate Br-O (1.593(3)-1.610(6) A) and Br-F (1.849(5)-1.827(4) A) bond lengths. The salt, [NO](2)[BrO(3)F(2)][F], is fully ordered, crystallizing in the monoclinic space group, C2/c, with a = 9.892(3) A, b = 12.862(4) A, c = 10.141(4) A, beta = 90.75(2) degrees , V = 12460(7) A(3), Z = 4, and R(1) = 0.0671 at -173 degrees C, whereas [N(CH(3))(4))][BrO(3)F(2)] exhibits a 2-fold disorder of the anion, crystallizing in the tetragonal space group, P4/nmm, with a = 8.5718(7) A, c = 5.8117(6) A, V = 427.02(7) A(3), Z = 2, and R(1) = 0.0314 at -173 degrees C. The (19)F chemical shift of [N(CH(3))(4))][BrO(3)F(2)] in CH(3)CN is 237.0 ppm and is more deshielded than those of the previously investigated Br(VII) species, BrO(3)F and BrF(6)(+). The vibrational frequencies of the BrO(3)F(2)(-) anion were determined by use of Raman and infrared spectroscopy and were assigned with the aid of electronic structure calculations and by analogy with the vibrational assignments reported for XeO(3)F(2) and OsO(3)F(2). The internal and symmetry force constants of BrO(3)F(2)(-) were determined by use of general valence force field and B-matrix methods, respectively, and are compared with those of XeO(3)F(2), OsO(3)F(2), and the unknown ClO(3)F(2)(-) anion. The instability of ClO(3)F(2)(-) relative to BrO(3)F(2)(-) has been investigated by electronic structure calculations and rationalized in terms of atomic charges, Mayer bond orders, and Mayer valencies, and the enthalpies of fluoride ion attachment to BrO(3)F and ClO(3)F.  相似文献   

17.
The reactions of [Rh(2)(DTolF)(2)(CH(3)CN)(6)][BF(4)](2) (1) (DTolF = N,N'-di-p-tolylformamidinate) with 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen) proceed with substitution of CH(3)CN molecules to give products with the N-N ligands chelating in an equatorial-equatorial (eq-eq) fashion. Compound 1 reacts with 1 equiv of bpy to yield a mixture of [Rh(2)(DTolF)(2)(bpy)(CH(3)CN)(3)][BF(4)](2).(CH(3))(2)CO (2a) and [Rh(2)(DTolF)(2)(bpy)(CH(3)CN)(4)][BF(4)](2) (2b). Compound 2a crystallizes in the monoclinic space group P2(1)/n with a = 13.5856(2) A, b = 18.0402(2) A, c = 21.4791(3) A; alpha = 90 degrees, beta = 101.044(1) degrees, gamma = 90 degrees; V = 5167.27(12) A(3), Z = 4, R = 0.0531, and R(w) = 0.0948. Compound 2b crystallizes in the monoclinic space group P2(1)/n with a = 10.9339(2) A, b = 24.4858(1) A, c = 19.4874(3) A; alpha = 90 degrees, beta = 94.329(1) degrees, gamma = 90 degrees; V = 5202.38(13) A(3), Z = 4, R = 0.0459, and R(w) = 0.1140. The reaction of compound 1 with 2 equiv of bpy affords [Rh(2)(DTolF)(2)(bpy)(2)(CH(3)CN)][BF(4)](2) (3) which crystallizes in the monoclinic space group P2(1)/a with a = 19.4534(4) A, b = 13.8298(3) A, c = 19.8218(5) A; alpha = 90 degrees, beta = 109.189(1) degrees, gamma = 90 degrees; V = 5036.5(2) A(3), Z = 4, R = 0.0589, and R(w) = 0.0860. Compound 1 reacts with 1 equiv of phen to form [Rh(2)(DTolF)(2)(phen)(CH(3)CN)(3)][BF(4)](2).2C(2)H(5)OC(2)H(5) (4) which crystallizes in the triclinic space group P1macro with a = 12.6346(2) A, b = 13.5872(2) A, c = 19.0597(3) A; alpha = 71.948(1) degrees, beta = 73.631(1) degrees, gamma = 71.380(1) degrees; V = 2886.70(8) A(3), Z = 2, R = 0.0445, and R(w) = 0.1207. A notable feature of the cations in 2a, 3, and 4 is the presence of only one axial (ax) CH(3)CN ligand, a fact that can be attributed to the steric effect of the formamidinate bridging ligands. Compounds 2a, 2b, 3, and 4 were fully characterized by X-ray crystallography and (1)H NMR spectroscopy, whereas [Rh(2)(DTolF)(2)(phen)(2)(CH(3)CN)(2)][BF(4)](2) (5) was characterized by (1)H NMR spectroscopy.  相似文献   

18.
The first phosphane complexes of germanium(iv) fluoride, trans-[GeF(4)(PR(3))(2)] (R = Me or Ph) and cis-[GeF(4)(diphosphane)] (diphosphane = R(2)P(CH(2))(2)PR(2), R = Me, Et, Ph or Cy; o-C(6)H(4)(PR(2))(2), R = Me or Ph) have been prepared from [GeF(4)(MeCN)(2)] and the ligands in dry CH(2)Cl(2) and characterised by microanalysis, IR, Raman, (1)H, (19)F{(1)H} and (31)P{(1)H} NMR spectroscopy. The crystal structures of [GeF(4)(diphosphane)] (diphosphane = Ph(2)P(CH(2))(2)PPh(2) and o-C(6)H(4)(PMe(2))(2)) have been determined and show the expected cis octahedral geometries. In anhydrous CH(2)Cl(2) solution the complexes are slowly converted into the corresponding phosphane oxide adducts by dry O(2). The apparently contradictory literature on the reaction of GeCl(4) with phosphanes is clarified. The complexes trans-[GeCl(4)(AsR(3))(2)] (R = Me or Et) are obtained from GeCl(4) and AsR(3) either without solvent or in CH(2)Cl(2), and the structures of trans-[GeCl(4)(AsEt(3))(2)] and Et(3)AsCl(2) determined. Unexpectedly, the complexes of GeF(4) with arsane ligands are very unstable and have not been isolated in a pure state. The behaviour of the germanium(iv) halides towards phosphane and arsane ligands are compared with the corresponding silicon(iv) and tin(iv) systems.  相似文献   

19.
The reactions of acrylonitrile (AN) with "L(2)PdMe+" species were investigated; (L(2) = CH(2)(N-Me-imidazol-2-yl)(2) (a, bim), (p-tolyl)(3)CCH(N-Me-imidazol-2-yl)(2) (b, Tbim), CH(2)(5-Me-2-pyridyl)(2) (c, CH(2)py'(2)), 4,4'-Me(2)-2,2'-bipyridine (d), 4,4'-(t)Bu(2)-2,2'-bipyridine (e), (2,6-(i)Pr(2)-C(6)H(3))N=CMeCMe=N(2,6-(i)Pr(2)-C(6)H(3)) (f)). [L(2)PdMe(NMe(2)Ph)][B(C(6)F(5))(4)] (2a-c) and [{L(2)PdMe}(2)(mu-Cl)][B(C(6)F(5))(4)] (2d-f) react with AN to form N-bound adducts L(2)Pd(Me)(NCCH=CH(2))(+) (3a-f). 3a-e undergo 2,1 insertion to yield L(2)Pd{CH(CN)Et}+, which form aggregates [L(2)Pd{CH(CN)Et}](n)(n)(+) (n = 1-3, 4a-e) in which the Pd units are proposed to be linked by PdCHEtCN- - -Pd bridges. 3f does not insert AN at 23 degrees C. 4a-e were characterized by NMR, ESI-MS, IR and derivatization to L(2)Pd{CH(CN)Et}(PR(3))+ (R = Ph (5a-e), Me (6a-c)). 4a,b react with CO to form L(2)Pd{CH(CN)Et}(CO)+ (7a,b). 7a reacts with CO by slow reversible insertion to yield (bim)Pd{C(=O)CH(CN)Et}(CO)+ (8a). 4a-e do not react with ethylene. (Tbim)PdMe+ coordinates AN more weakly than ethylene, and AN insertion of 3b is slower than ethylene insertion of (Tbim)Pd(Me)(CH(2)=CH(2))(+) (10b). These results show that most important obstacles to insertion polymerization or copolymerization of AN using L(2)PdR+ catalysts are the tendency of L(2)Pd{CH(CN)CH(2)R}+ species to aggregate, which competes with monomer coordination, and the low insertion reactivity of L(2)Pd{CH(CN)CH(2)R}(substrate)+ species.  相似文献   

20.
The reaction of [NBu(4)](2)[Ni(C(6)F(5))(4)] (1) with solutions of dry HCl(g) in Et(2)O results in the protonolysis of two Nibond;C(6)F(5) bonds giving [NBu(4)](2)[[Ni(C(6)F(5))(2)](2)(mu-Cl)(2)] (2 a) together with the stoichiometrically required amount of C(6)F(5)H. Compound 2 a reacts with AgClO(4) in THF to give cis-[Ni(C(6)F(5))(2)(thf)(2)] (3). Reacting 3 with phosphonium halides, [PPh(3)Me]X, gives dinuclear compounds [PPh(3)Me](2)[[Ni(C(6)F(5))(2)](2)(mu-X)(2)] (X=Br (2 b) or I (2 c)). Solutions of compounds 2 in CH(2)Cl(2) at 0 degrees C do not react with excess CNtBu, but do react with CO (1 atm) to split the bridges and form a series of terminal Ni(II) carbonyl derivatives with general formula Qcis-[Ni(C(6)F(5))(2)X(CO)] (4). The nu(CO) stretching frequencies of 4 in CH(2)Cl(2) solution decrease in the order Cl (2090 cm(-1))>Br (2084 cm(-1))>I (2073 cm(-1)). Compounds 4 revert to the parent dinuclear species 2 on increasing the temperature or under reduced CO pressure. [NBu(4)]cis-[Ni(C(6)F(5))(2)Cl(CO)] (4 a) reacts with AgC(6)F(5) to give [NBu(4)][Ni(C(6)F(5))(3)(CO)] (5, nu(CO)(CH(2)Cl(2))=2070 cm(-1)). Compound 5 is also quantitatively formed ((19)F NMR spectroscopy) by 1:1 reaction of 1 with HCl(Et(2)O) in CO atmosphere. Complex 3 reacts with CO at -78 degrees C to give cis-[Ni(C(6)F(5))(2)(CO)(2)] (6, nu(CO)(CH(2)Cl(2))=2156, 2130 cm(-1)), which easily decomposes by reductive elimination of C(6)F(5)bond;C(6)F(5). Compounds 3 and 6 both react with CNtBu to give trans-[Ni(C(6)F(5))(2)(CNtBu)(2)] (7). The solid-state structures of compounds 3, 4 b, 6, and 7 have been established by X-ray diffraction methods. Complexes 4-6 are rare examples of square-planar Ni(II) carbonyl derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号