首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The migration characteristics of small polar molecules are evaluated on etched, chemically modified capillaries with four different moieties (C5, C18, diol and cholesterol) bonded onto a silica hydride surface. The effects of pH on migration are used to determine the possible contributions of eletrophoretic mobility, electroosmotic flow (EOF) and analyte/bonded phase interactions. The EOF on etched capillaries is more complicated than on ordinary fused capillaries because it changes from anodic to cathodic as the pH is raised. A mixture of neurotransmitters and related compounds is used to further evaluate the effects of the bonded moiety on the separation properties of this particular electrophoretic format.  相似文献   

2.
Fused silica capillaries for use in electrophoretic analyses are etched with ammonium bifluoride in the presence of a second inorganic salt (CuCl(2), CrCl(3), NaNO(3), or (NH(4))(2)CO(3)). The effects of the presence of these inorganic components in the surface matrix on the electromigration behavior of enkephalins are evaluated. Resolution, efficiency and peak shape are used to compare the various columns. In some cases the etched surface is then modified by the addition of an octadecyl moiety using a silanization/hydrosilation procedure. The surface properties of the etched capillaries can also be evaluated by electroosmotic flow measurements. RSDs of migration times under identical experimental conditions were <1%.  相似文献   

3.
This paper reports on a new strategy to coat fused silica capillaries through ionic adsorption of gold nanoparticles (AuNPs) on a polyelectrolyte multilayer (PEM) modified capillary wall. The coating was constructed in situ by alternating rinses with positively charged poly(diallydimethylammonium chloride), negatively charged poly(sodium-4-styrenesulfonate), and positively charged AuNPs. After self-assembly of n-octadecanethiol onto the surface of AuNPs, the modified capillary was investigated as a new medium for the separation of neutral analytes and proteins in open-tubular capillary electrochromatography (OT-CEC). The surface coverage of the capillary wall was increased using the high density of AuNPs which were dynamically capped with 4-dimethylaminopyridine (DMAP). The chromatographic performance of the column coated with positively charged AuNPs was remarkably improved compared with a column modified with negatively charged AuNPs. The coating was robust over more than 810 runs in this study and also showed high stability against 0.01 M NaOH, 0.01 M HCl, and electrolyte concentrations up to 70 mM. The run-to-run, day-to-day, and capillary-to-capillary reproducibilities of electroosmotic flow were satisfying with relative standard deviation values of less than 1% in all cases. The AuNP-coated PEM modified capillary column not only showed good performance for neutral analytes but also was suitable for the analysis of both basic and acidic proteins.  相似文献   

4.
Fused silica capillaries with an I.D. of 20 microns are etched and then chemically modified by the silanization/hydrosilation method to attach an octadecyl moiety for use in electrokinetic chromatography. The etched capillaries after chemical modification are shown to have an anodic electroosmotic flow below pH 4.5. In comparison to bare 20 microns capillaries and unetched but chemically modified 20 microns capillaries, the etched C18 fused silica tubes show better separation of mixtures of lysozymes and cytochrome c's under identical conditions of buffer, pH and applied voltage. It was also demonstrated that this open tubular approach to capillary electrochromatography was amenable to a number of different types of basic compounds ranging in size from typical small amines to biomolecules. As expected, pH is an important variable that must be controlled in order to obtain an optimized separation. Reproducibility studies verify the stability of the silicon-carbon linkage produced in this modification method so that column lifetimes of at least 300 injections can be expected.  相似文献   

5.
The use of etched, chemically modified, capillaries with a rectangular inner channel for open tubular electrochromatography is investigated. Comparisons of separation capabilities are made between circular and rectangular capillaries undergoing the same etching and chemical modification processes. With the long dimension of the rectangular column aligned in the direction of the optical light path, the relative sensitivities of the two capillary geometries are evaluated. The electrochromatographic properties of two catechins found in tea are investigated on the rectangular etched octadecyl-modified capillary.  相似文献   

6.
Hamer M  Yone A  Rezzano I 《Electrophoresis》2012,33(2):334-339
We report a new method of immobilization of gold nanoparticles (AuNPs) on a fused-silica capillary through covalent binding. The resulting modified capillary was applied to electrophoretic systems to improve the efficiency of separation and the selectivity of selected solutes. The immobilization of AuNPs on the capillary wall was performed in a very simple and fast way without requiring heating. The surface features of an AuNP-coated capillary column were determined using the scanning electron microscopy. The chromatographic properties of AuNP-coated capillaries were investigated through variation of the buffer pH and separation voltage. Effective separations of synthetic peptides mixture were obtained on the AuNP-coated capillaries. The method shows a remarkable stability since it was reused about 900 times. The capacity factor was duplicated. Therefore, this modification is stable and can be applied to different separation purposes. A complex mixture of tryptic peptide fragments of HSA was analyzed in both the bare- and the AuNP-coated capillaries. Better electrophoretic peptide profile was observed when using the AuNP-coated capillary.  相似文献   

7.
Two open-tubular (OT) capillary electrochromatographic (CEC) columns were prepared by chemically bonding ionizable mono-(2-(methacryloyloxy)ethyl) succinate (MES) and phthalate-functionalized (MEP) ligands onto silica hydride-based phases through surface etching, silanization, and hydrosilation reactions, starting with a bare fused-silica tube. An analysis of the effect of performance of electrophoretic flow (EOF) on the changes in pH values, ionic strength, and the amount of acetonitrile modifiers helped to reveal that some silanol groups remained in the surface composite of the modified capillaries and to prove that MEP capillaries actually exerted greater EOF than MES ones. To explore the potential utilization of these two columns in various fields, three categories of samples, which spanned a wide range of polarities, were prepared and analyzed through many systematic trials of optimizing CEC conditions. For the separation of a mixture of nucleosides and thymine, guanine and adenine with purine uncleobases, which exhibit greater aromaticity than pyrimidine nucleobases, performed a higher retention in the MEP capillary through a π–π interaction than in the MES capillary. While four steroids were used as test samples, their migration order revealed that the MES stationary phase is hydrophilic in comparison with the MEP. An addition of methanol modifier (30%, v/v) into 10 mM borate buffer (pH 9.55 for MEP; pH 10.0 for MES) was necessary to accomplish a baseline separation of nine flavonoids in the MEP and MES capillaries. Studies on the elution order of these solutes revealed the presence of chromatographic activity in addition to electrophoretic migration. Especially in the MEP capillary, hydrophobic characteristics and π–π interactions with aromatic solutes were found and further improved to resolve an enantiomeric pair, catechin and epicatechin. Overall, the hydride-based stationary phases with ionizable ligands were successfully applied to the OT-CEC separations, and these results confidently propose an ideal route to the synthesis of a novel OT-CEC column.  相似文献   

8.
Etched chemically modified capillaries with two different bonded groups (pentyl and octadecyl) are compared for their migration behavior of several common proteins and metalloproteins as well as metalloproteinases. Migration times, efficiency and peak shape are evaluated over the pH range of 2.1-8.1 to determine any effects of the bonded group on the electrochromatographic behavior of these compounds. One goal was to determine if the relative hydrophobicity of the stationary phase has a significant effect on proteins in the open tubular format of capillary electrochromatography as it does in HPLC. Reproducibility of the migration times is also investigated.  相似文献   

9.
Phospholipid-coated fused-silica capillaries with immobilized avidin were applied in the chiral separation of D,L-tryptophan, D,L-PTH-serine, and D,L-PTH-threonine at pH 7.4 by open-tubular CEC. Liposomes prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(Cap biotinyl), or 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(Biotinyl) with different amounts of phosphatidylserine were assessed as phospholipid coating materials. The stability of the coating and the success of the coating procedure were evaluated in terms of the repeatability of the enantiomer migration times and the resolution of enantiomers. The coating procedure itself significantly affected the migration times and resolution of the enantiomers. Reliable chiral separations with high separation efficiencies were achieved through careful choice of the coating method.  相似文献   

10.
Chen JL 《Electrophoresis》2006,27(4):729-735
A synthetic coppermesogenic polymer is prepared and then covalently bonded to the siloxane-based deactivated column as the stationary phases of open-tubular CEC with essentially high phase ratio. The EOF generated from the modified phase is surveyed through conventional aqueous buffers and hydroorganic mobile phases. Zeta potentials, which are computed from the EOF data and the ratio of dielectric constant to viscosity, are plotted as a function of pH, ionic molarity, and compositional range. These plots responsible for the electroosmotic characteristic of the bonded phases are found to be like those of bare fused-silica or deactivated columns through decreasing or increasing the ACN content in the mobile phase, respectively. This two-phase characteristic is basically derived from the polymeric configuration with carboxylato ligands attached onto the polysiloxane backbone. Phthalates and amino acids are suitable probes to examine the two phenomena, more-polar and less-polar mediums, respectively, and to judge whether the chromatographic retention is the major source of separation mechanism. With the mixing modes of Lewis acid-base interaction, dispersive force, and shape discrimination, the chromatographic partition adequately accomplishes the uneasily resolved separations by only CZE mode, although the electrophoretic migration is truly somewhat involved.  相似文献   

11.
Synthesis of poly(2-hydroxyethyl methacrylate) (PHEMA) brushes from the inside of silica capillaries by surface-initiated atom transfer radical polymerization (ATRP) yields unique stationary phases for open-tubular capillary electrochromatography (OT-CEC). Although PHEMA brushes have only a small effect on the separation of a set of phenols and anilines, derivatization of PHEMA with ethylenediamine (en) allows baseline resolution of several anilines that co-elute from bare silica capillaries. Derivatization of PHEMA with octanoyl chloride (C8-PHEMA films) affords even better resolution in the separation of a series of phenols and anilines. Increasing the thickness of C8-PHEMA coatings by a factor of 2 enhances resolution for several solute pairs, presumably because of an increase in the effective stationary phase to mobile phase volume ratio. Thus, this work demonstrates that thick polymer brushes provide a tunable stationary phase with a much larger phase ratio than is available from monolayer wall coatings. Through appropriate choice of derivatizing reagents, these polymer brushes should allow separation of a wide range of neutral molecules as well as compounds with similar electrophoretic mobilities.  相似文献   

12.
This review represents a summary of recent progress in open-tubular capillary electrochromatography (OT-CEC) for chiral and achiral separations. The OT-CEC approach is an alternative to packed-CEC that could eliminate the problems associated with retaining frits and silica particles. In OT-CEC, the stationary phase is immobilized on the inner walls of the capillary. Preparation of the stationary phase is critical for OT-CEC. The preparation methods for capillary columns include (i) adsorption, (ii) covalent bonding and/or cross-linking, (iii) porous layers, (iv) chemical bonding after etching, (v) sol-gel, and (vi) molecular imprinting. Major developments, potential applications, technical difficulties and advantages associated with these wall coatings in OT-CEC are presented. In addition, the coupling of OT-CEC with mass spectrometry (MS) is briefly reviewed. Several applications of this hyphenated technique for analytical separations are also summarized.  相似文献   

13.
Capillary electrochromatography (CEC), which combines the advantages of the high efficiency of capillary electrophoresis (CE) and the high selectivity of liquid chromatography (LC), has recently received considerable attention. Most CEC experiments have been performed with capillary columns packed with small LC packing materials (1.5–5 μm particle diameter). However, problems such as difficulties in packing the small LC packing materials and fabricating the frits still exist in preparing the CEC column. The use of open-tubular columns in CEC is therefore an alternative approach that can eliminate the problems encountered in packed-column CEC. So far, several types of open-tubular columns have been proposed for CEC separations and in this article recent progress in this area is reviewed.  相似文献   

14.
Open-tubular columns for capillary electrochromatography (CEC) were formed by immobilising dodecanethiol gold nanoparticles on prederivatised 3-aminopropyl-trimethoxysilane (APTMS) or 3-mercaptopropyl-trimethoxysilane (MPTMS) fused-silica capillaries. The initial stage of this research involved the synthesis and characterisation of dodecanethiol gold nanoparticles, with tunnelling electron microscopy analysis of the dispersed phase of the gold nanoparticles dispersion in CHCl3, revealing spherical particles. The surface features of an Au-MPTMS coated capillary column were determined using scanning electron microscopy. The electroosmotic flow characteristics of Au-APTMS and Au-MPTMS capillary columns were then determined, by varying the pH and the voltage. The electrochromatographic properties of the gold nanoparticles CEC capillaries were investigated using a "reversed-phase" test mixture of thiourea, benzophenone and biphenyl and selected pyrethroid pesticides. Efficient separations of benzophenone and biphenyl solutes on Au-MPTMS and Au-APTMS capillary columns were obtained, as were linear plots of logarithm capacity factor versus % MeOH. A study of the reproducibility of retention for these solutes on Au-APTMS, Au-MPTMS and on a loosely coated capillary demonstrated the necessity of a coupling agent to prevent the gold nanoparticles from washing-off. These dodecanethiol gold capillary columns are easier to produce and operate than packed capillary columns. The research work confirms the use of gold nanoparticles as a novel phase for open-tubular CEC, demonstrating reproducible retention and characteristic reversed-phase behaviour.  相似文献   

15.
Packed column capillary electrochromatography (CEC), open-tubular CEC and microcolum liquid chromatography (LC) using a cholesteryl silica bonded phase have been studied to compare the retention behavior for benzodiazepines. It has been found that packed column CEC gives better resolution, faster analysis time than microcolumn LC for benzodiazepines maintaining similar selectivity except for some solutes which are charged species under the separation conditions. However, open-tubular CEC gave different selectivities to a larger extent for charged benzodiazepines from that which should be produced by the chromatographic properties of the cholesteryl silica phase. Charged species migration times are mainly influenced by electrophoretic mobility rather than the chromatographic interactions.  相似文献   

16.
A new type of capillary column for open-tubular electrochromatography   总被引:1,自引:0,他引:1  
Zhao Y  Zhao R  Shangguan D  Liu G 《Electrophoresis》2002,23(17):2990-2995
A new type of open-tubular C(18) ester-bonded electrochromatographic column was prepared with sol-gel technology, followed by an on-column octadecyl silylation reaction. Glycidoxypropyltrimethoxysilane, a widely used and important silane agent, was used as the sol-gel precursor to form a thin coating layer on the wall of the fused-silica capillary. The C(18) groups were introduced into the coating layer by on-column esterification reaction with stearic acid. The electrochromatography behavior of the column was evaluated in terms of the separation of peptides. A high efficiency of 4.8x10(5) plates/m was achieved for a basic pentapeptide using the C(18 )ester-bonded column. In comparison with bare capillaries and glycidoxypropyltrimethoxysilane sol-gel-coated capillaries, the C(18) ester-bonded column showed the best separation of a mixture of seven pentapeptides under identical conditions of buffer, pH, and applied voltage.  相似文献   

17.
p-tert-Butylcalix[8]arene bonded capillaries for open-tubular capillary electrochromatography were prepared with γ-glycidoxypropyltrimethoxysilane as a bridge. The bonded capillary displayed low and steady electroosmotic flow (EOF) values over the pH range from 4 to 9. Detection limits for direct spectrophotometric detection at 277 nm for benzenediols (at a signal to noise ratio of 2) were 0.96 mg l−1 for the unbonded capillary and 1.48 mg l−1 for the bonded capillary, showing that the bonded layer did not show significant absorbance and hence decreased sensitivity. The bonded capillaries showed good separation selectivity for o-, m- and p-benzenediols, α- and β-naphthols, and α- and β-naphthylamines. This selectivity was attributed to significant interactions between the analytes and the bonded p-tert-butylcalix[8]arene, which contributed to the electrochromatographic separation mechanism. The bonded capillaries gave high stability and reproducibility.  相似文献   

18.
19.
This review examines the most recent innovations made to achieve high performance in open-tubular capillary electrochromatography (OT-CEC) separations, focusing on the ingenious chemical and physical solutions made to increase the surface area and equip the stationary phase with exploitable selectivity. Among the approaches taken are chemically bonded ligands, etching with chemical bonding, sol-gels, molecularly imprinted polymers, porous layers, physically attached or adsorbed phases, and nanoparticle coatings. Particularly noteworthy are modern developments with macrocyclic receptor ligands, nanoparticles and open channel electrochromatography on-chip.  相似文献   

20.
Chen JL  Lu TL  Lin YC 《Electrophoresis》2010,31(19):3217-3226
A new phase containing immobilized carbon nanotubes (CNTs) was synthesized by in situ polymerization of acid-treated multi-walled CNTs using butylmethacrylate (BMA) as the monomer and ethylene dimethacrylate as the crosslinker on a silanized capillary, forming a porous-layered open-tubular column for CEC. Incorporation of CNT nanomaterials into a polymer matrix could increase the phase ratio and take advantage of the easy preparation of an OT-CEC column. The completed BMA-CNT column was characterized by SEM, ATR-IR, and EOF measurements, varying the pH and the added volume organic modifier. In the multi-walled CNTs structure, carboxylate groups were the major ionizable ligands on the phase surface exerting the EOF having electroosmotic mobility, 4.0 × 10(4) cm2 V(-1)1 S(-1)1, in the phosphate buffer at pH 2.8 and RSD values (n=5), 3.2, 4.1, and 4.3%, for three replicate capillaries at pH 7.6. Application of the BMA-CNT column in CEC separations of various samples, including nucleobases, nucleosides, flavonoids, and phenolic acids, proved satisfactory upon optimization of the running buffers. Their optima were found in the borate buffers at pH 9.0/50 mM, pH 9.5/10 mM/50% v/v ACN, and pH 9.5/30 mM/10% v/v methanol, respectively. The separations could also be used to assess the relative contributions of electrophoresis and chromatography to the CEC mechanism by calculating the corresponding velocity and retention factors. Discussions about interactions between the probe solutes and the bonded phase included the π-π interactions, electrostatic repulsion, and hydrogen bonding. Furthermore, a reversed-phase mode was discovered to be involved in the chromatographic retention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号