首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of readily prepared bisphosphonic acids obtained in few steps through a thio-Michael addition of commercially available thiols on tetraethyl vinylidenebisphosphonate enables the straightforward surface modification of amorphous mesoporous zirconia nanoparticles. Simple stirring of the zirconia nanoparticles in a buffered aqueous solution of the proper bisphosphonic acid leads to the surface functionalization of the nanoparticles with different kinds of functional groups, charge and hydrophobic properties. Formation of both chemisorbed and physisorbed layers of the bisphosphonic acid take place, observing after extensive washing a grafting density of 1.1 molecules/nm2 with negligible release in neutral or acidic pH conditions, demonstrating stronger loading compared to monophosphonate derivatives. The modified nanoparticles were characterized by IR, XPS, ζ-potential analysis to investigate the loading of the bisphosphonic acid, FE-SEM to investigate the size and morphologies of the nanoparticles and 31P and 1H MAS NMR to investigate the coordination motif of the phosphonate units on the surface. All these analytical techniques demonstrated the strong affinity of the bisphosphonic moiety for the Zr(IV) metal centers. The functionalization with bisphosphonic acids represents a straightforward covalent approach for tailoring the superficial properties of zirconia nanoparticles, much straightforward compared the classic use of trisalkoxysilane or trichlorosilane reagents typically employed for the functionalization of silica and metal oxide nanoparticles. Extension of the use of bisphosphonates to other metal oxide nanoparticles is advisable.  相似文献   

2.
The behaviour of the 6% aluminium–magnesium alloy (AM60) surface in zirconium or titanium fluoride aqueous acid solutions was studied. X‐ray photoelectron spectroscopy was used to investigate modifications in the surface chemistry with respect to the composition of the surface treatment solution. The surface film is composed of magnesium hydroxide and hydroxyfluoride, zirconium oxide, oxyhydroxide or oxyfluoride, titanium oxide and structural and adsorbed water. Optimal parameters leading to the formation of a zirconium‐ or titanium‐rich film were determined. A mechanism is proposed for the formation of zirconium‐ or titanium‐based films. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Chemical functionalization of semiconductor surfaces, particularly silicon oxide, has enabled many technologically important applications (e.g., sensing, photovoltaics, and catalysis). For such processes, hydroxyl groups terminating the oxide surface constitute the primary reaction sites. However, their reactivity is often poor, hindering technologically important processes, such as surface phosphonation requiring a lengthy postprocessing annealing step at 140 °C with poor control of the bonding geometry. Using a novel oxide-free surface featuring a well-defined nanopatterned OH coverage, we demonstrate that hydroxyl groups on oxide-free silicon are more reactive than on silicon oxide. On this model surface, we show that a perfectly ordered layer of monodentate phosphonic acid molecules is chemically grafted at room temperature, and explain why it remains completely stable in aqueous environments, in contrast to phosphonates grafted on silicon oxides. This fundamental understanding of chemical activity and surface stability suggests new directions to functionalize silicon for sensors, photovoltaic devices, and nanoelectronics.  相似文献   

4.
Layered group(IV) metal phosphates and their phenylsulfonic acid derivatives were used as catalysts for the synthesis of methyl tert-butyl ether (MTBE) from methanol and isobutene. Because zirconium and titanium phosphates have only moderate acidic strength, relatively high temperatures are required to activate their Brønsted acidic sites. The optimal activity was obtained at ca. 443 K. Their phenylsulfonic acid derivatives, however, demonstrated higher acidic strength by giving much higher activity toward MTBE formation at relatively low temperaures. The catalysts were characterized in terms of their structure, thermal stability, surface area and acidic strength.  相似文献   

5.
运用BET、XRD、FT-Raman以及微量吸附量热等手段对由浸渍三种晶型氧化锆及其前体氢氧化锆制备的负载钨催化剂的结构及其表面酸性进行了研究。结果表明起始原料和制备条件对氧化锆的结构有显著影响。浸渍在氢氧化锆上的钨物种会使氢氧化锆转变为四方晶型氧化锆。但浸渍于氧化锆上的钨物种使氧化锆发生晶型转变相对较难。负载钨催化剂表面强酸位的形成与载体晶型、表面钨物种WOx以及WOx与载体氧化锆之间的相互作用有关。催化剂上的强酸位可因残留的Na+离子所毒化或阻抑。少量Y3+离子对表面酸性则无明显影响。  相似文献   

6.
We have used X-ray phase analysis, temperature programmed desorption of argon, and IR spectroscopy to study the conditions and characteristics of formation and the adsorption and acidic properties of mesoporous phosphated zirconium dioxide. We have established that treatment of a mesostructural and mesoporous hydrogel of zirconium hydroxide with a solution of orthophosphoric acid not only promotes stabilization of the mesostructure and the texture when detemplated, but also functionalization of the zirconium dioxide surface. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 42, No. 1, pp. 49–54, January–February, 2006.  相似文献   

7.
Pure titania, zirconia, and mixed oxides (3–37 mol.% of ZrO2) are prepared using the sol-gel method and calcined at different temperatures. The calcined samples are characterized by Raman spectroscopy, X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption porosimetry. Measurements reveal a thermal stability of the titania anatase phase that slightly increases in the presence of 3–13 mol.% of zirconia. Practically, the titania anatase-rutile phase transformation is hindered during the temperature increase above 700°C. The mixed oxide with 37 mol.% of ZrO2 treated at 550°C shows a new single amorphous phase with a surface area of the nanoparticles double with respect to the other crystalline samples and the formed srilankite structure (at 700°C). The anatase phase is not observed in the sample containing 37 mol.% of ZrO2. The treatment at 700°C causes the formation of the srilankite (Ti0.63Zr0.37Ox) phase.  相似文献   

8.
Herein, functionalized graphene oxide (GO) was prepared by the covalent functionalization with amino acids (lysine, glycine, glutamic acid and tyrosine) in this study. Zeta potential results demonstrated that covalent functionalization of GO with amino acids was favourable for their homogeneous dispersion in water and organic solvents. Based on the higher absolute value of zeta potential and the better dipersion stability of GO-lysine, the PVDF/GO-lysine hybrid membranes were then prepared via the phase inversion induced by immersion precipitation technique. SEM images showed a better pore diameter and porosity distribution on the PVDF/GO-lysine membrane surface. The zeta potential absolute value of the PVDF/GO-lysine membrane surface was higher than that of the virgin PVDF membrane. Furthermore, the PVDF/GO-lysine membranes surface exhibited good hydrophilicity. The water flux of PVDF/GO-lysine membranes can reach to two times of that of the virgin PVDF membrane. And the BSA adsorbed amount on PVDF/GO-lysine surface was decreased to 0.82 mg/cm2 for PVDF/GO-lysine-8% membrane. Filtration experiment results indicated that the fouling resistance was significantly improved for the PVDF/GO-lysine membranes. As a result, lysine functionalized GO will provide a promising method to fabricate graphene oxide based hybrid membranes with effective antifouling property and hydrophilicity.  相似文献   

9.
Mesoporous molecular sieves Si-MCM-41 (purely siliceous) and Ti-MCM-41 (partly covered with a surface layer of TiO2) were functionalized with phosphate groups by treatment with POCl3 (denoted -MCM-41(P)and Ti-MCM-41(P), respectively). With the use of TEM, X-ray diffraction, and N2 adsorption, it was shown that the initial hexagonal structure, the high specific surface area, and porosity are retained in the functionalized materials but are not as good as in the starting materials. 1H MAS NMR and 31P MAS NMR revealed that the surface of Si-MCM-41(P) consists of silicon phosphate and pyrophosphate species. That of Ti-MCM-41(P) additionally contains titanium dihydro-, hydro-, and pyrophosphate species, the latter being predominant. TPD of adsorbed ammonia for Si-MCM-41(P) and Ti-MCM-41(P) showed that functionalization leads to the creation of moderate and strong acid sites. A combination of mesoporous structure with acidic properties makes the MCM-41 functionalized with phosphate groups promising for use as solid acid catalysts.  相似文献   

10.
Agarose template for the fabrication of macroporous metal oxide structures   总被引:1,自引:0,他引:1  
Agarose gels have been applied as templates for the formation of macroporous metal oxide structures. The preparation of the agarose template is extremely simple, and with variation of the agarose content, control over morphology is demonstrated: The average pore size decreases from 180 to 55 nm and the surface area increases from 238 to 271 m2 g(-1) with increasing agarose content in the gel. The gelling temperature was also found to influence the final template morphology. Conducting sol-gel chemistry within the template structure followed by removal of the template by heating to 450 degrees C gives porous inorganic oxides. The technique has been demonstrated for the oxides of titanium, zirconium, niobium, and tin. The final morphology of the metal oxide is homogeneous and results from a coating of the agarose structure. The pore diameter decreased and the specific surface area of the titanium dioxide materials increased from 28 to 66 m2 g(-1) as the agarose content in the template is increased from 0.5 to 5.0 wt%. The overall pore size and surface area are lower than the original gel due to shrinkage occurring with the sol-gel process, as well as crystallization and a loss of microporosity in the final material.  相似文献   

11.
The influence of high-k dielectric bioceramics with poly(amino acid) multilayer coatings on the adhesion behavior of Escherichia coli (E. coli) was studied by evaluating the density of bacteria coverage on the surfaces of these materials. A biofilm forming K-12 strain (PHL628), a wild-type strain (JM109), and an engineered strain (XL1-Blue) of E. coli were examined for their adherence to zirconium oxide (ZrO(2)) and tantalum oxide (Ta(2)O(5)) surfaces functionalized with single and multiple layers of poly(amino acid) polyelectrolytes made by the layer-by-layer (LBL) deposition. Two poly(amino acids), poly(l-arginine) (PARG) and poly(l-aspartic acid) (PASP), were chosen for the functionalization schemes. All three strains were found to grow and preferentially adhere to bare bioceramic film surfaces over bare glass slides. The bioceramic and glass surfaces functionalized with positively charged poly(amino acid) top layers were observed to enhance the adhesion of these bacteria by up to 4-fold in terms of bacteria surface coverage. Minimal bacteria coverage was detected on surfaces functionalized with negatively charged poly(amino acid) top layers. The effect of different poly(amino acid) coatings to promote or minimize bacterial adhesion was observed to be drastically enhanced with the bioceramic substrates than with glass. Such observed enhancements were postulated to be attributed to the formation of higher density of poly(amino acids) coatings enabled by the high dielectric strength (k) of these bioceramics. The multilayer poly(amino acid) functionalization scheme was successfully applied to utilize this finding for micropatterning E. coli on bioceramic thin films.  相似文献   

12.
To obtain an ideal electrocatalysts for hydrogen fuel cells, we investigated group 4 and 5 oxide-based compounds because of their high degree of freedom. First-principles calculations revealed that oxide surfaces such as those of titanium oxide could break down the universal scaling to achieve the ideal state of the oxygen reduction reaction. We experimentally clarified that the active sites were oxygen vacancies for tantalum and zirconium oxides, in addition to doped foreign elements and crystalline structures for titanium oxide. We successfully demonstrated that precious metal-free and carbon-free oxide-based cathodes have high quality active sites and superior durability in 0.1 M sulfuric acid at 80°C. Our strategy was developed as follows: (1) Active sites are created on the oxide surface by modifying the crystalline structure and electronic states and (2) electrons participating in the oxygen reduction reaction are supplied by nanosized oxide particles and oxide films through the tunneling effect of electrons.  相似文献   

13.
The data of temperature-programmed desorption of ammonia from the surface of oxide systems and IR spectroscopy were used to demonstrate that the strength of the surface acid sites in titanium oxides prepared by the alkoxo method and modified by aluminum decreases with respect to that in nonmodified titanium oxide. Modification of titanium oxide with P3+ ions from ethriol phosphite almost completely suppresses the acid properties. Modified oxides are able to chemisorb water. XANES data suggest that modification of titanium oxide with phosphorus ions increases the electron density on the titanium atoms and, correspondingly, the basicity of the materials.  相似文献   

14.
Metallo-supramolecular self-assembly has yielded a plethora of discrete nanosystems, many of which show competence in capturing guests and catalyzing chemical reactions. However, the potential of low-molecular bottom-up self-assemblies in the development of structured inorganic materials has rarely been methodically explored so far. Herein, we present a new type of metallo-supramolecular surfactant with the ability to stabilize non-aqueous emulsions for a significant period. The molecular design of the surfactant is based on a heteroleptic coordination cage ( CGA-3 ; CGA =Cage-based Gemini Amphiphile), assembled from two pairs of organic building blocks, grouped around two Pd(II) cations. Shape-complementarity between the differently functionalized components generates discrete amphiphiles with a tailor-made polarity profile, able to stabilize non-aqueous emulsions, such as hexadecane-in-DMSO. These emulsions were used as a medium for the synthesis of spherical metal oxide microcapsules (titanium oxide, zirconium oxide, and niobium oxide) from soluble, water-sensitive alkoxide precursors by allowing a controlled dosage of water to the liquid-liquid phase boundary. Synthesized materials were analyzed by a combination of electron microscopic techniques. In situ liquid cell transmission electron microscopy (LC-TEM) was utilized for the first time to visualize the dynamics of the emulsion-templated formation of hollow inorganic titanium oxide and zirconium oxide microspheres.  相似文献   

15.
The humidity and water tolerance of a sol-gel derived binder prepared using a cheap, multicomponent precursor has been studied. The sol was prepared by dissolving the precursor in water under acidic conditions using either formic acid or a mixture of formic acid and citric acid for pH adjustments. It is shown that a post-treatment temperature of 400 °C or higher is needed in order to achieve full binder stability under excess water conditions, as thermal decomposition of metal carboxylates leads to a pronounced decrease in water solubility of the gels. The mesoporous gel can be made hydrophobic by post-treatments with either a silane or an organophosphonate, showing that both silica and metal oxides are exposed on the surface of the binder. Surface functionalization is especially effective for gels heat-treated at higher temperatures where the metal carboxylates have decomposed to the corresponding oxides or carbonates. The results are expected to be of great importance for the use of this cheap binder in large scale industrial applications. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

16.
In this paper, cupric oxides was found to effectively oxidize levulinic acid (LA) and lead to the decarboxylation of levulinic acid to 2-butanone. The effects of cupric oxide dosage, reaction time and initial pH value were investigated in batch experiments and a plausible mechanism was proposed. The results showed that LA decarboxylation over cupric oxides at around 300 °C under acidic conditions produced the highest yield of butanone (67.5%). In order to elucidate the catalytic activity of cupric oxides, XRD, AFM, XPS and H(2)-TPR techniques was applied to examine their molecular surfaces and their effects on the reaction process.  相似文献   

17.
用浸渍法和共沉淀法分别制得CuO---ZrO~2复合氧化具物有不同的选择还原NO~x的催化性能,采用XRD,BET,EXAFS和H~2---TPR等手段对样品进行了表征,发现浸渍法制备的样品具有的比表面较大,氧化锆被稳定在四方相。EXAFS实验表明,浸渍法制得样品的铜离子填入氧化锆表面空穴中,并以Cu^2+形式存在;500℃焙条件下用共沉淀法引入的铜离子可部分取代锆离子,在氧化锆体相高度分散形成均匀的无定形固溶体,铜离子在氧化锆体相的高度分散是形成表面弧立铜物种的关键。溶入氧化锆体相的铜离子在取代部位由于局部负电荷而使氧化性降低,是共沉淀法制备样品具有较高催化活性的主要原因。  相似文献   

18.
The treatment of graphene oxide (GO) with potassium thioacetate followed by an aqueous work‐up yields a new material via the ring‐opening of the epoxide groups. The new material is a thiol‐functionalized GO (GO‐SH) which is able to undergo further functionalization. Reaction with butyl bromide gives another new material, GO‐SBu, which shows significantly enhanced thermal stability compared to both GO and GO‐SH. The thiol‐functionalized GO material showed a high affinity for gold, as demonstrated by the selective deposition of a high density of gold nanoparticles.  相似文献   

19.
The surface characteristics of mixed zirconium and titanium oxides prepared from different starting materials are investigated. One mode of preparation entailed the use of zirconium sulfate and titanium oxysulfate as starting materials and ammonium hydroxide as precipitating agent. The produced oxides were washed to different extents to obtain samples with different sulfate content. A second preparative mode used zirconium oxychloride and titanous chloride as starting materials also with ammonium hydroxide as precipitating agent. The oxidation of the titanous to the titanic form for these oxides was carried out by means of oxygen gas. Resulting samples were heat treated at 400 °C and 600 °C, and textural characteristics determined from the adsorption of N2 at 77 K, complemented by infrared and thermal studies. The samples precipitated from the oxychloride and chloride salts of zirconium and titanium, as well as those precipitated from the sulfate and oxysulfate salts and washed free of the sulfate ions displayed quite similar textural characteristics. The unheated samples and those heat-treated at 400 °C were mesoporous, with some microporosity, and relatively large surface areas in the order of 200–300 m2/g. Heat treatment to 600 °C led to a relative decrease in surface area, in the order of 100 m2/g, and to the disappearance of microporosity. The mixed zirconium and titanium oxides with a sulfate content of ≈17% displayed significantly lower surface areas, smaller than 10 m2/g, with a prevalence of micro and mesoporosity. Infrared and thermal studies indicated the presence of differently bounded sulfato groups, which seem to have a blocking effect on the pores, resulting in the observed smaller surface areas.  相似文献   

20.
The relationship between electric charge at a material surface and protein adsorption is essential to understand the mechanism of biological integration of materials with tissues. This study investigated the influence of titanium thin films' surface chemistry and surface electric charge (zeta-potential) properties on protein adsorption and cell proliferation. Titanium thin films were surface functionalized with different functional end groups, such as -CH=CH2, -NH2 and -COOH groups in order to produce surfaces with a variety of electric charge properties. The chemical compositions, electric charges and wettability were investigated by using X-ray photoelectron spectroscopy (XPS), zeta-potential measurements and water contact angle measurements, respectively. XPS revealed the surface functionalization of titanium films with -CH=CH2, -NH2, and -COOH groups, which were converted from -CH=CH2 groups. Ti-COOH samples showed the lowest water contact angles and zeta-potential compared to all other samples investigated in this study. NH2-terminated titanium films displayed intermediate contact angles of 70.3+/-2.5 degrees . Fibrinogen adsorption on titanium films and surface functionalized titanium films were investigated in this study. Ti-COOH samples displayed a lower protein adsorption than all other groups, such as NH2-, -CH=CH2-terminated titanium thin films. A tendency that the lower zeta-potential of the samples, the lower the protein adsorption at their surfaces was observed. In vitro cell proliferation tests were also performed on the different surface functionalized titanium films. NH2-terminated titanium films displayed good cell proliferation and cell viability tendency. However, a lower cell proliferation on COOH-terminated titanium films was observed compared with NH2-terminated titanium films. This effect was attributed to the difference in protein adsorption of these samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号