首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel total synthesis of the complex polyketide (+)-discodermolide, a promising anticancer agent of sponge origin, has been completed in 7.8% overall yield over 24 linear steps, with 35 steps altogether. This second-generation approach was designed to rely solely on substrate control for introduction of the required stereochemistry, eliminating the use of all chiral reagents or auxiliaries. The common 1,2-anti-2,3-syn stereotriad found in each of three subunits, aldehyde 9 (C(1)-C(5)), ester 40 (C(9)-C(16)), and aldehyde 13 (C(17)-C(24)), was established via a boron-mediated aldol reaction of ethyl ketone 15 and formaldehyde, followed by hydroxyl-directed reduction to give 1,3-diol 14. Alternatively, a surrogate aldehyde 22 was employed for formaldehyde in this aldol reaction, leading to the beta-hydroxy aldehyde 20 as a common building block, corresponding to the discodermolide stereotriad. Key fragment unions were achieved by a lithium-mediated anti aldol reaction of ester 40 and aldehyde 13 under Felkin-Anh control to provide (16S,17S)-adduct 51 and a boron-mediated aldol reaction between enone 10 and aldehyde 9, exploiting unprecedented remote 1,6-stereoinduction, to give the (5S)-adduct 57.  相似文献   

2.
[structure: see text] A novel total synthesis of the complex polyketide discodermolide, a promising anticancer agent of marine sponge origin, has been completed in 11.1% overall yield over 21 linear steps. This third-generation approach features an unprecedented Still-Gennari-type HWE olefination reaction between advanced C1-C8 beta-ketophosphonate 61 and C9-C24 aldehyde 7, introducing the (8Z)-alkene with 10:1 selectivity. The stereotetrad found in the C1-C8 subunit 61 was established via a highly diastereoselective boron-mediated aldol reaction/in situ reduction between ketone (S)-8 and 3-benzyloxypropanal. The (7S)-configuration was installed by the reduction of enone 73 with K-Selectride.  相似文献   

3.
By relying solely on substrate-based stereocontrol, a practical total synthesis of the microtubule-stabilizing anticancer agent (+)-discodermolide has been realized. This exploits a novel aldol bond construction with 1,6-stereoinduction from the boron enolate of (Z)-enone 3 in addition to aldehyde 2. The 1,3-diol 7 is employed as a common building block for the C(1)-C(5), C(9)-C(16), and C(17)-C(24) subunits. [reaction--see text]  相似文献   

4.
A highly stereocontrolled total synthesis of the 18-membered macrolide (+)-concanamycin F, a potent inhibitor of vacuolar ATPases, is described that proceeds in 5.8% yield over 26 steps. The three key fragments, C1-C13 vinyl iodide, C14-C22 vinyl stannane and C23-C28 aldehyde, were efficiently constructed using asymmetric boron-mediated aldol reactions of appropriate chiral ketone building blocks. The nature of the silyl protection of the C7/C9 hydroxyls proved to be critical for achieving macrocyclisation, with TES ethers being superior to a cyclic silylene derivative. Following a Liebeskind-Stille cross-coupling reaction between the C1-C13 vinyl iodide and C14-C22 vinyl stannane fragments to assemble the (12E,14E)-diene, a modified Yamaguchi macrolactonisation delivered the requisite 18-membered macrocyclic core. This advanced intermediate was also obtained by an alternative sequence using an esterification step to connect the C1-C13 and C14-C22 fragments followed by a Pd-catalysed intramolecular Stille reaction to install the (12E,14E)-diene. Conversion of the resulting macrocyclic intermediate into a methyl ketone then enabled a highly diastereoselective Mukaiyama aldol coupling of the derived silyl enol ether with the C13-C28 aldehyde fragment to install the fully elaborated side chain, whereby subsequent global deprotection of the resulting β-hydroxyketone under suitable conditions (TASF followed by p-TsOH) afforded (+)-concanamycin F.  相似文献   

5.
A convergent total synthesis of the cytotoxic natural product cruentaren B is completed in 26 steps (longest linear sequence) with an overall yield of 7.1%. For the construction of the C1-C11 benzolactone fragment of the molecule, the key steps used were O-methylation, using a Mitsunobu reaction, a Stille coupling method to construct the C7-C8 bond, and a Brown's asymmetric crotylboration reaction for the direct enantioselective installation of the two chiral centers present in this fragment. For diastereoselective installation of the chiral centers in the C12-C20 polyketide fragment, an Evans syn aldol reaction on a chiral aldehyde, derived from methyl (R)-3-hydroxyl-2-methylpropionate, and subsequently a Mukaiyama aldol reaction were employed. For the construction of the C21-C28 tail, a "non-Evans" syn aldol reaction was used. The three fragments were coupled by an SN2 reaction and a Wittig olefination reaction followed by standard functional group manipulations to furnish the target molecule.  相似文献   

6.
The total synthesis of the epidermal growth factor inhibitor reveromycin B (2) in 25 linear steps from chiral methylene pyran 13 is described. The key steps involved an inverse electron demand hetero-Diels-Alder reaction between dienophile 13 and diene 12 to construct the 6,6-spiroketal 11 which upon oxidation with dimethyldioxirane and acid catalyzed rearrangement gave the 5,6-spiroketal aldehyde 9. Lithium acetylide addition followed by oxidation/reduction and protective group manipulation provided the reveromycin B spiroketal core 8 which was converted into the reveromycin A (1) derivative 6 in order to confirm the stereochemistry of the spiroketal segment. Introduction of the C1-C10 side chain began with sequential Wittig reactions to form the C8-C9 and C7-C6 bonds, and a tin mediated asymmetric aldol reaction installed the C4 and C5 stereocenters. The final key steps to the target molecule 2 involved a Stille coupling to introduce the C21-C22 bond, succinoylation, selective deprotection, oxidation, and Wittig condensation to form the final C2-C3 bond. Deprotection was effected by TBAF in DMF to afford reveromycin B (2) in 72% yield.  相似文献   

7.
An efficient and stereoselective synthesis of the C13-C23 part (8) was achieved starting from methyl (R)- and (S)-3-hydroxy-2-methylpropionates (9) via coupling of the C13-C17 aldehyde (6), prepared by Evans asymmetric aldol reaction, with the C18-C21 iodoalkene (5b) by taking advantage of the 3,4-dimethoxybenzyl protecting group.  相似文献   

8.
The C(1)-C(12) segment of 16-membered antitumor macrolide peloruside A has been prepared by a BF(3).OEt(2)-catalyzed Mukaiyama aldol reaction between a glucose-derived C(1)-C(7) aldehyde and a C(8)-C(12) alpha-benzyloxymethyl ketone. Exclusive 2,3-anti and moderate 3,5-anti/syn facial selectivity (3.5:1) was observed in the aldol reaction. The key C(1)-C(7) aldehyde contains the required stereochemistry at carbons two, three, and five, and has been efficiently prepared on multigram scales from commercial triacetyl D-glucal. [reaction: see text]  相似文献   

9.
The asymmetric synthesis of the macrolide antibiotics (+)-rutamycin B (1) and (+)-oligomycin C (2) is described. The approach relied on the synthesis and coupling of the individual spiroketal fragments 3a and 3b with the C1-C17 polyproprionate fragment 4. The preparation of the spiroketal fragments was achieved using chiral (E)-crotylsilane bond construction methodology, which allowed the introduction of the stereogenic centers prior to spiroketalization. The present work details the synthesis of the C19-C28 and C29-C34 subunits as well as their convergent assembly through an alkylation reaction of the lithiated N,N-dimethylhydrazones 6 and 8 to afford the individual linear spiroketal intermediates 5a and 5b, respectively. After functional group adjustment, these advanced intermediates were cyclized to their respective spiroketal-coupling partners 40 and 41. The requisite polypropionate fragment was assembled in a convergent manner using asymmetric crotylation methodology for the introduction of six of the nine-stereogenic centers. The use of three consecutive crotylation reactions was used for the construction of the C3-C12 subunit 32. A Mukaiyama-type aldol reaction of 35 with the chiral alpha-methyl aldehyde 39 was used for the introduction of the C12-C13 stereocenters. This anti aldol finished the construction of the C3-C17 advanced intermediate 36. A two-carbon homologation completed the construction of the polypropionate fragment 38. The completion of the synthesis of the two macrolide antibiotics was accomplished by the union of two principal fragments that was achieved with an intermolecular palladium-(0) catalyzed cross-coupling reaction between the terminal vinylstannanes of the individual spiroketals 3a and 3b and the polypropionate fragment 4. The individual carboxylic acids 46 and 47 were cyclized to their respective macrocyclic lactones 48 and 49 under Yamaguchi reaction conditions. Deprotection of these macrolides completed the synthesis of the rutamycin B and oligomycin C.  相似文献   

10.
Highly stereoselective syntheses of aldols 8a-c corresponding to the C(13)-C(25) segment of bafilomycin A(1) were developed by routes involving fragment assembly aldol reactions of chiral aldehyde 6a and the chiral methyl ketones 7. A remote chelation effect plays a critical role in determining the stereoselectivity of the key aldol coupling of 6a and the lithium enolate of 7b. The protecting group for C(23)-OH of the chiral aldehyde fragment also influences the selectivity of the lithium enolate aldol reaction. In contrast, the aldol reaction of 6a and the chlorotitanium enolates of 7a,c were much less sensitive to the nature of the C(15)-hydroxyl protecting group. Studies of the reactions of chiral aldehydes with Takai's (gamma-methoxyallyl)chromium reagent 40 are also described. The stereoselectivity of these reactions is also highly dependent on the protecting groups and stereochemistry of the chiral aldehyde substrates.  相似文献   

11.
The stereocontrolled synthesis of the C1-C16 ABC spiroacetal-containing tricyclic fragment of pectenotoxin-7 6 has been accomplished. The key AB spiroacetal aldehyde 9 was successfully synthesized via acid catalyzed cyclization of protected ketone precursor 28 that was readily prepared from aldehyde 12 and sulfone 13. The syn stereochemistry in aldehyde 12 was installed using an asymmetric aldol reaction proceeding via a titanium enolate. The stereogenic centre in sulfone 13 was derived from (R)-(+)-glycidol. The absolute stereochemistry of the final spiroacetal aldehyde 9 was confirmed by NOE studies establishing the (S)-stereochemistry of the spiroacetal centre. Construction of the tetrahydrofuran C ring system began with Wittig olefination of the AB spiroacetal aldehyde 9 with (carbethoxyethylidene)triphenylphosphorane 10 affording the desired (E)-olefin 32. Appendage of a three carbon chain to the AB spiroacetal fragment was achieved via addition of acetylene 11 to the unstable allylic iodide 39. Epoxidation of (E)-enyne 8 via in situ formation of L-fructose derived dioxirane generated the desired syn-epoxide 36. Semi-hydrogenation of the resulting epoxide 36 followed by dihydroxylation of the alkene effected concomitant cyclization, thus completing the synthesis of the ABC spiroacetal ring fragment 6.  相似文献   

12.
A synthesis of the C(29)-C(45) bis-pyran subunit 2 of spongistatin 1 (1a) is described. The synthesis proceeds in 19 steps from the chiral aldehyde ent-7, and features highly diastereoselective alpha-alkoxyallylation reactions using the gamma-alkoxy substituted allylstannanes 17 and 19, as well as a thermodynamically controlled intramolecular Michael addition to close the F-ring pyran. The E ring was assembled via the Mukaiyama aldol reaction of F-ring methyl ketone 3 and the 2,3-syn aldehyde 4.  相似文献   

13.
An efficient, highly convergent stereocontrolled synthesis of (+)-discodermolide has been achieved with 2.1% overall yield (27 steps longest linear sequence). The absolute stereochemistry of the C1-C6 (12), C7-C14 (13), and C15-C24 (11) subunits was introduced using asymmetric crotylation methodology. Key elements of the synthesis include the use of hydrozirconation-cross-coupling methodology for the construction of C13-C14 (Z)-olefin, acetate aldol reaction to construct the C6-C7 bond and install the C7 stereocenter with high levels of 1,5-anti stereoinduction, and the use of palladium-mediated sp(2)-sp(3) cross-coupling reaction to join the advanced fragments, which assembled the carbon framework of discodermolide.  相似文献   

14.
The total synthesis of spongistatin 1 (1) and spongistatin 2 (2) has been achieved through an advanced-stage intermediate. The synthesis is highlighted by a highly convergent assembly of the four key fragments (the C1-C15 AB fragment 2, the C16-C28 CD fragment 3, the C29-C43 EF fragment 4, and the C44-C51 side chain 5) at a very advanced stage of the synthesis with minimal functional group interconversion. The CD fragment 3 functions as the central building block to which the other fragments are attached. The synthesis of the AB and CD spiroketal fragments is accomplished through the addition of a metalated gamma-pyrone to a beta-alkoxy aldehyde followed by spiroketalization. The EF subunit was assembled with high diastereoselectivity relying on asymmetric aldol reactions of chlorotitanium enolates of N-propionyl oxazolidinethiones and a double diastereoselective boron aldol to join the E and F fragments. Wittig coupling of the CD and EF fragments followed by a diastereoselective aldol reaction between the CDEF ketone and an AB aldehyde set the stage for attachment of the C44-C51 side chains and final macrolactonization and deprotection.  相似文献   

15.
Li Y  Hale KJ 《Organic letters》2007,9(7):1267-1270
[structure: see text]. A new asymmetric total synthesis of (+)-eremantholide A is reported in which a Hoveyda-Grubbs ring-closing metathesis (RCM) reaction is used to assemble the nine-membered oxonin ring, and an enolate alkylation between the 3(2H)-furanone 2 and O-triflate 3 is exploited for C(9)-C(10) bond construction. An Evans asymmetric aldol reaction and a Sharpless asymmetric epoxidation served to stereoselectively install the C(6), C(7), and C(8) stereocenters of the target structure.  相似文献   

16.
Ferrié L  Figadère B 《Organic letters》2010,12(21):4976-4979
The synthesis of the C(1)-C(9) fragment of amphidinolides C, C2, and F was achieved by using a vinyloguous Mukaiyama aldol reaction on a chiral aldehyde with a silyloxyfuran and by using a C-glycosylation of a lactol derivative with an acetyl oxazolidinethione. From the available chiral acetonide-glyceraldehyde, all the stereogenic centers were perfectly induced along the synthesis. The C(1)-C(9) fragment was synthesized as a vinyl stannane at C(9) in 10 steps, with 16% yield.  相似文献   

17.
The segments C(1)-C(13) and C(15)-C(21) containing the 13 stereogenic centers required for the frame of (+)-discodermolide were synthesized in good to excellent enantio- and diastereoselectivities from a common racemic aldehyde, derived from 2-methyl-1,3-propanediol. The enantioselective aldol reactions of the racemic aldehyde with a silylketene acetal, derived from ethyl 2-bromopropionate, in the presence of chiral oxazaborolidinones, prepared in situ with N-p-toluenesulfonyl-(R)- and -(S)-valine and BH(3).THF, proceeded under kinetic control to give the stereotriads with a high degree of enantioselectivity. Enantioselective (chiral borane) and diastereoselective (BF(3).OEt(2) and TiCl(4)) aldol reactions with the silylketene acetal, coupled with diastereoselective radical debrominations (Bu(3)SnH, Et(3)B, with or without MgBr(2)), were used iteratively. This aldol reaction strategy for the construction of the polypropionate frame dramatically shortened the steps needed for the construction of the final segments.  相似文献   

18.
A stereoselective synthesis of the C1-C15 fragment of a G-actin binding natural macrodiolide, rhizopodin was achieved using, as key steps, highly stereoselective acetate aldol reactions to build the C1-C7 fragment, one pot oxazole synthesis and an asymmetric Keck allylation reaction to build the C8-C15 fragment and finally, a Stille reaction to couple both the fragments.  相似文献   

19.
A highly stereoselective total synthesis of (-)-bafilomycin A(1), the naturally occurring enantiomer of this potent vacuolar ATPase inhibitor, is described. The synthesis features the highly stereoselective aldol reaction of methyl ketone 8b and aldehyde 60c and a Suzuki cross-coupling reaction of the highly functionalized advanced intermediates 12 and 39. Vinyl iodide 12 was synthesized by a 14-step sequence starting from the readily available beta-alkoxy aldehyde 14, while the vinylboronic acid component 39 was synthesized by a nine-step sequence from beta-hydroxy-alpha-methyl butyrate 44 via a sequence involving the alpha-methoxypropargylation of chiral aldehyde 49 with the alpha-methoxypropargylstannane reagent 54. Syntheses of fragments 12 and 39 also feature diastereoselective double asymmetric crotylboration reactions to set several of the critical stereocenters. The Suzuki cross-coupling of 12 and 39 provided seco ester 40, which following conversion to the seco acid underwent smooth macrolactonization to give 41. The success of the macrocyclization required that C(7)-OH be unprotected. The Mukaiyama aldol reaction between aldehyde 60c and the TMS enol ether generated from 8b provided aldol 65 with high diastereoselectivity. Finally, all silicon protecting groups were removed by treatment of the penultimate intermediate 65 with TAS-F (tris(dimethylamino)sulfonium difluorotrimethylsilicate), thereby completing the total synthesis of (-)-bafilomycin A(1).  相似文献   

20.
An efficient stereocontrolled synthesis of apoptolidinone A, the aglycone of apoptolidin A is described. The synthetic strategy relies on a cross coupling between C11/C12 of a northern half (C1-C11) and a southern part (C12-C28) followed by a ring-size selective macrolactonization. Key steps for the introduction of the southern half stereocenters are a stereoselective aldol reaction, a substrate controlled dihydroxylation and a chelation-controlled Grignard/aldehyde addition. The conjugated triene of the northern half was built up successively by E-selective Wittig reactions. L-Malic acid was chosen as the chiral pool source for the C8/C9 stereocenters. The final cleavage of the silyl ethers and the conversion of the C21 methyl ketal into the hemiketal was achieved by HF.pyridine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号