首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We exhibit a dense set of limit periodic potentials for which the corresponding one-dimensional Schrödinger operator has a positive Lyapunov exponent for all energies and a spectrum of zero Lebesgue measure. No example with those properties was previously known, even in the larger class of ergodic potentials. We also conclude that the generic limit periodic potential has a spectrum of zero Lebesgue measure.  相似文献   

2.
Simon’s subshift conjecture states that for every aperiodic minimal subshift of Verblunsky coefficients, the common essential support of the associated measures has zero Lebesgue measure. We disprove this conjecture in this paper, both in the form stated and in the analogous formulation of it for discrete Schrödinger operators. In addition we prove a weak version of the conjecture in the Schrödinger setting. Namely, under some additional assumptions on the subshift, we show that the density of states measure, a natural measure associated with the operator family and whose topological support is equal to the spectrum, is singular. We also consider one-frequency quasi-periodic Schrödinger operators with continuous sampling functions and show that generically, the density of states measure is singular as well.  相似文献   

3.
We consider the 1d Schrödinger operator with random decaying potential and compute the 2nd term asymptotics of the density of states, which shows substantial differences between the cases \(\alpha > \frac{1}{2}\), \(\alpha < \frac{1}{2}\) and \(\alpha = \frac{1}{2}\).  相似文献   

4.
We consider the propagation of wave packets for the nonlinear Schrödinger equation, in the semi-classical limit. We establish the existence of a critical size for the initial data, in terms of the Planck constant: if the initial data are too small, the nonlinearity is negligible up to the Ehrenfest time. If the initial data have the critical size, then at leading order the wave function propagates like a coherent state whose envelope is given by a nonlinear equation, up to a time of the same order as the Ehrenfest time. We also prove a nonlinear superposition principle for these nonlinear wave packets.  相似文献   

5.
We propose some nonlinear Schrödinger equations by adding some higher order terms to the Lagrangian density of Schrödinger field, and obtain the Gross-Pitaevskii (GP) equation and the logarithmic form equation naturally. In addition, we prove the coefficient of nonlinear term is very small, i.e., the nonlinearity of Schrödinger equation is weak.  相似文献   

6.
A classical field theory for a Schrodinger equation with a non-Hermitian Hamiltonian describing a particle with position-dependent mass has been recently advanced by Nobre and Rego-Monteiro(NR)[Phys.Rev.A 88(2013)032105].This field theory is based on a variational principle involving the wavefunction Ψ(x,t) and an auxiliary fieldΦ{x,t).It is here shown that the relation between the dynamics of the auxiliary field Φ(x,t) and that of the original wavefunction Ψ(x,t) is deeper than suggested by the NR approach.Indeed,we formulate a variational principle for the aforementioned Schrodinger equation which is based solely on the wavefunction Ψ(x,t).A continuity equation for an appropriately defined probability density,and the concomitant preservation of the norm,follows from this variational principle via Noether's theorem.Moreover,the norm-conservation law obtained by NR is reinterpreted as tie preservation of the inner product between pairs of solutions of the variable mass Schrodinger equation.  相似文献   

7.
8.
We construct generalized grand-canonical- and canonical Gibbs measures for a Hamiltonian system described in terms of a complex scalar field that is defined on a circle and satisfies a nonlinear Schrödinger equation with a focusing nonlinearity of order p < 6. Key properties of these Gibbs measures, in particular absence of “phase transitions” and regularity properties of field samples, are established. We then study a time evolution of this system given by the Hamiltonian evolution perturbed by a stochastic noise term that mimics effects of coupling the system to a heat bath at some fixed temperature. The noise is of Ornstein–Uhlenbeck type for the Fourier modes of the field, with the strength of the noise decaying to zero, as the frequency of the mode tends to ∞. We prove exponential approach of the state of the system to a grand-canonical Gibbs measure at a temperature and “chemical potential” determined by the stochastic noise term.  相似文献   

9.
We adopt a formulation of the Mach principle that the rest mass of a particle is a measure of it’s long-range collective interactions with all other particles inside the horizon. As a consequence, all particles in the universe form a ‘gravitationally entangled’ statistical ensemble and one can apply the approach of classical statistical mechanics to it. It is shown that both the Schrödinger equation and the Planck constant can be derived within this Machian model of the universe. The appearance of probabilities, complex wave functions, and quantization conditions is related to the discreetness and finiteness of the Machian ensemble.  相似文献   

10.
An algorithm is proposed for studying the symmetry properties of equations used in theoretical and mathematical physics. The application of this algorithm to the free Schrödinger equation permits one to establish that, in addition to the known Galilei symmetry, the free Schrödinger equation possesses also relativistic symmetry in some generalized sense. This property of the free Schrödinger equation provides an extension of the equation into the relativistic domain of the free particle motion under study.  相似文献   

11.
In the first example containing a long ranged potential, the long range part of the solution is obtained by an iterative Born-series type method. The convergence is illustrated for a case with the long range part of the potential given by C 6/r 6. Accuracies of 1 : 108 are achieved after 8 iterations. The second example iteratively calculates the solution of a non-linear Gross–Pitaevskii equation for condensed Bose atoms contained in a trap at low temperature.  相似文献   

12.
In this paper we obtain a stabilization result for both linear and nonlinear Schrödinger equations under generic assumptions on the potential. Then we consider the Schrödinger equations with a potential which has a random time-dependent amplitude. We show that if the distribution of the amplitude is sufficiently non-degenerate, then any trajectory of the system is almost surely non-bounded in Sobolev spaces.  相似文献   

13.
In this paper we discuss two different models of dependent percolation on the graph 2. These models can be thought of as percolation in a random environment. They were inspired by the work of McCoy and Wu [7,8] on the Ising model in a random environment as well as other models of particle systems in a random environment [9, 5, 6, 3]. We show that both models of dependent percolation exhibit phase transitions. This proves a version of stability for percolation on 2 and proves a conjecture of Jonasson, Mossel and Peres [4], who proved a similar result on 3.Research supported in part by an NSF postdoctoral fellowshipAcknowledgement I would like to thank David Levin and Yuval Peres for introducing me to the problem. I would also like to thank Yuval Peres and Eric Babson for helpful conversations.  相似文献   

14.
We present a simple method to estimate the Lyapunov exponent (E) for the system
  相似文献   

15.
This paper presents a fractional Schrödinger equation and its solution. The fractional Schrödinger equation may be obtained using a fractional variational principle and a fractional Klein-Gordon equation; both methods are considered here. We extend the variational formulations for fractional discrete systems to fractional field systems defined in terms of Caputo derivatives to obtain the fractional Euler-Lagrange equations of motion. We present the Lagrangian for the fractional Schrödinger equation of order α. We also use a fractional Klein-Gordon equation to obtain the fractional Schrödinger equation which is the same as that obtained using the fractional variational principle. As an example, we consider the eigensolutions of a particle in an infinite potential well. The solutions are obtained in terms of the sines of the Mittag-Leffler function.  相似文献   

16.
In this paper we prove that ground states of the NLS which satisfy the sufficient conditions for orbital stability of M. Weinstein, are also asymptotically stable, for seemingly generic equations. The key issue is to prove that a certain coefficient is non-negative because is a square power. We assume that the NLS has a smooth short range nonlinearity. We assume also the presence of a very short range and smooth linear potential, to avoid translation invariance. The basic idea is to perform a Birkhoff normal form argument on the hamiltonian, as in a paper by Bambusi and Cuccagna on the stability of the 0 solution for NLKG. But in our case, the natural coordinates arising from the linearization are not canonical. So we need also to apply the Darboux Theorem. With some care though, in order not to destroy some nice features of the initial hamiltonian.  相似文献   

17.
We consider the simple case of a nonrelativistic charged harmonic oscillator in one dimension, to investigate how to take into account the radiation reaction and vacuum fluctuation forces within the Schrödinger equation. The effects of both zero-point and thermal classical electromagnetic vacuum fields, characteristic of stochastic electrodynamics, are separately considered. Our study confirms that the zero-point electromagnetic fluctuations are dynamically related to the momentum operator p=?i ? ?/? x used in the Schrödinger equation.  相似文献   

18.
Starting from results already obtained for quasi-periodic co-cycles in $SL(2, \mathbb R),$ we show that the rotation number of the one-dimensional time-continuous Schr?dinger equation with Diophantine frequencies and a small analytic potential has the behavior of a $\frac{1}{2}-$ H?lder function. We give also a sub-exponential estimate of the length of the gaps which depends on its label given by the gap-labeling theorem.  相似文献   

19.
We review the dynamics of narrow and broad-band optical pulses in nonlinear dispersive media. A major problem that arises during the development of theoretical models, which describe accurately and correctly the behavior of these pulses, is the limited application of the nonlinear Schr?dinger equation. It describes very well the evolution of nanosecond and picosecond laser pulses. However, when we investigate the propagation of femtosecond and attosecond light pulses, it is necessary to use the more general nonlinear amplitude equation. We show that in this equation two additional terms are included and they have a significant impact on the phase of the pulse. We perform numerical simulations and show the temporal shift of the position of fundamental solitons. This effect depends on the initial duration of the laser pulses. To clarify the influence of the additional terms on the parameters of the optical pulses, we consider the nonlinear amplitude equation, which is a modified nonlinear Schr?dinger equation.  相似文献   

20.
Generalising the linearisation procedure used by Dirac and later by Lévy-Leblond, we derive the first-order non-relativistic wave equations for particles of spin 1 and spin 3/2 starting from the Schrödinger equation. By the introduction in the momentum of a correction linear in coordinates, we establish the wave equation of the radial harmonic oscillator with spin-orbit coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号