首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A proposed method of studying three-dimensional rarefied gas flow around a body of revolution is based on the numerical solution of model kinetic equations. By way of example, the problem is considered of hypersonic flow round an ellipsoid of revolution whose velocity vector forms an angle of 0 with the axis of symmetry of the body and is located in the plane of symmetry. A study is made of the effect of the angle of attack, surface temperature and Knudsen number on the aerodynamic characteristics of the body.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti 1 Gaza, No. 1, pp. 184–186, January–February, 1986.  相似文献   

2.
3.
Using the Maxwell method, transfer equations describing molecular gas flows in viscous shock and hypersonic boundary layers are obtained. It is shown that, in contrast to the Navier-Stokes approximation, the kinetic model proposed makes it possible correctly to describe hypersonic flow around bodies under conditions of strong nonequilibrium of the internal and translational degrees of freedom of the gas particles.  相似文献   

4.
5.
Using the direct simulation Monte Carlo method, the hypersonic flow of a binary gas mixture around a cylinder is investigated over a wide rarefaction range: from an almost continuum regime (at the Knudsen number Kn = 0.01) to free-molecular flow. The effect of a small admixture of heavy diatomic particles in a light gas flow on the relaxation processes near the cylinder and the heat flux is studied.  相似文献   

6.
7.
In the framework of the locally self-similar approximation of the Navier-Stokes equations an investigation is made of the flow of homogeneous gas in a hypersonic viscous shock layer, including the transition region through the shock wave, on wings of infinite span with rounded leading edge. The neighborhood of the stagnation line is considered. The boundary conditions, which take into account blowing or suction of gas, are specified on the surface of the body and in the undisturbed flow. A method of numerical solution of the problem proposed by Gershbein and Kolesnikov [1] and generalized to the case of flow past wings at different angles of slip is used. A solution to the problem is found in a wide range of variation of the Reynolds numbers, the blowing (suction) parameter, and the angle of slip. Flow past wings with rounded leading edge at different angles of slip has been investigated earlier only in the framework of the boundary layer equations (see, for example, [2], which gives a brief review of early studies) or a hypersonic viscous shock layer [3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 150–154, May–June, 1984.  相似文献   

8.
The previously demonstrated success of the reference enthalpy concept in heat transfer prediction at hypersonic flow conditions is utilized herein to propose a cost-effective methodology for extrapolation-to-flight of Stanton number measurements (or baseline computational results), and the determination of radiation-equilibrium surface temperatures that develop on actual vehicle surfaces during hypersonic/high enthalpy flight conditions. The methodology couples the (analytical) generalized reference enthalpy solution with Euler computations (providing input data along the edge of thin boundary layers) and is, therefore, significantly cheaper and more efficient than the execution of full Navier–Stokes computations that are presently incorporated, particularly so in the thermo-chemically active high enthalpy flow regime. The validity of the proposed methodology is demonstrated in a first step by means of two-dimensional test cases, whereby extrapolated data accuracy is better than 20%.
  相似文献   

9.
The aerodynamic coefficients of a plate in a hypersonic stream at low Reynolds numbers are studied over a wide range of similarity parameters. The dependence of the lift coefficientC Y on the tangential force coefficient, the finite Mach number at the outer edge of the boundary layer and the velocity-slip and temperature-jump boundary conditions is taken into consideration. The nonmonotonic character of the relationship betweenC Y and the Reynolds number, revealed previously in experiments, is explained within the framework of the viscous hypersonic interaction model.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 186–189, January–February, 1996.  相似文献   

10.
Some results are presented of experimental studies of the equilibrium temperature and heat transfer of a sphere in a supersonic rarefied air flow.The notations D sphere diameter - u, , T,,l, freestream parameters (u is velocity, density, T the thermodynamic temperature,l the molecular mean free path, the viscosity coefficient, the thermal conductivity) - T0 temperature of the adiabatically stagnated stream - Te mean equilibrium temperature of the sphere - Tw surface temperature of the cold sphere (Twe) - mean heat transfer coefficient - e air thermal conductivity at the temperature Te - P Prandtl number - M Mach number  相似文献   

11.
A stable high-order Runge-Kutta discontinuous Galerkin(RKDG) scheme that strictly preserves positivity of the solution is designed to solve the Boltzmann kinetic equation with model collision integrals. Stability is kept by accuracy of velocity discretization, conservative calculation of the discrete collision relaxation term, and a limiter. By keeping the time step smaller than the local mean collision time and forcing positivity values of velocity distribution functions on certain points, the limiter can preserve positivity of solutions to the cell average velocity distribution functions. Verification is performed with a normal shock wave at a Mach number 2.05, a hypersonic flow about a two-dimensional(2D) cylinder at Mach numbers 6.0 and 12.0, and an unsteady shock tube flow. The results show that, the scheme is stable and accurate to capture shock structures in steady and unsteady hypersonic rarefied gaseous flows. Compared with two widely used limiters, the current limiter has the advantage of easy implementation and ability of minimizing the influence of accuracy of the original RKDG method.  相似文献   

12.
The proposed method of visualizing hypersonic flows of a rarefied gas employs the cathode luminescence of a glow discharge. It is shown that the method possesses high sensitivity and good spatial resolving power and may be used to study flows with slip and in the transitional regime.  相似文献   

13.
A hypersonic shock-tunnel flow around an axisymmetric model of a planetary entry probe is analyzed. Planar laser-induced fluorescence is applied to measure both the velocity and the rotational temperature everywhere in the central plane of the flow field. The experimental test case is compared to simulations using the direct simulation Monte Carlo (DSMC) method. While the Mach 9.7 flow at a freestream Reynolds number based on the model diameter of 35,000 is chemically frozen, effects of thermal non-equilibrium and localized rarefaction cannot be neglected. DSMC and measurements agree well within the outer wake, but disagree close to the centerline, where in particular the measured velocity is higher than values predicted by the simulations. The experimental results indicated a shorter recirculation region and increased local fluctuations in the free shear layer upstream of the wake recompression shock when compared to the simulation. These effects are attributed to incipient transition, which is not observed in the simulations, as the simulations did not model the effects of freestream fluctuations. Furthermore, measured and simulated vorticities are compared with theoretical predictions.  相似文献   

14.
The effect of the shape of a blunt nose of a body located in a hypersonic rarefied gas flow on the field of flow and on the aerodynamic characteristics is studied in the example of flow round ellipsoids of revolution at a zero angle of attack. The problem of the flow in the transition regime is solved on the basis of numerical analysis of the model kinetic Bhatnagar—Gross—Krook (BGK) equation for a monatomic gas. The good agreement of the results of the numerical calculations with the experimental data in a broad range of Mach numbers has shown [1, 2] that the numerical solution of the model kinetic equations is a reliable and effective means for studying flow problems. In the case when the problem is posed of determining the laws of the purely force interaction of a flow with the body, sufficiently good accuracy is given by the use of the model BGK equation.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 190–192, March–April, 1985.  相似文献   

15.
The hypersonic rarefied gas flow over blunt bodies near the symmetry plane is investigated for the regime transitional from continuum to free-molecular. Three rarefied gas flow regimes are considered depending on the relationship between the determining parameters of the problem. For all regimes, at small Reynolds numbers, asymptotic solutions of the thin viscous shock layer equations near the symmetry plane of blunt bodies are obtained in the form of simple analytical expressions for the heat transfer, skin friction and pressure coefficients as functions of the gas-dynamic parameters of the free-stream flow and the geometric parameters and temperature of the body. With decrease in the Reynolds number these coefficients approach their values in free-molecular flow (with the accommodation coefficient equal to unity). From comparison with the data calculated using the direct simulation Monte Carlo method, the accuracy and applicability limits of the analytical solution are estimated.  相似文献   

16.
Results are presented of a measurement of density and temperature on the stagnation line of a cylinder in cross flow at Mach number M=5, Knudsen number Kn=0.06?0.33, and with temperature factor varying from 1 to 0.11. The effect of degree of rarefaction and the temperature factor on the structure of the perturbed region ahead of the cylinder has been investigated.  相似文献   

17.
18.
19.
The efficiency of the self-similar interpolation method is demonstrated with reference to the solution of the problem of heat transfer in a rarefied gas between two coaxial cylinders rotating relative one another. The analytical solution of the problem is compared with the results obtained by direct statistical simulation. The most interesting result is the energy flux nonmonotonicity and the reversal of its sign with variation in the Knudsen number.  相似文献   

20.
A solution is presented for incompressible non-Newtonian liquids of the one-dimensional stationary temperature field which arises due to heat dissipation between two concentric cylinders, the outer fixed and thermostated, the inner rotating at a constant angular velocity. The object of the study is to outline a simple procedure for determining the temperature rise of the liquid and, primarily, to ascertain the corrections of the consistent variables and D which enable the experimenter to rectify the rheogram on the basis of measurement of the shear stress and the angular velocity . The results obtained are summarized in graphical form as diagrams of the temperature and velocity fields and, to facilitate practical application of the correction procedure, in a table relating the dimensionless temperature function (, n, ) to the geometry , the flow behaviour index n, and the coefficient of temperature rise and showing the function (1) as well.List of symbols a radius of the inner cylinder - b radius of the outer cylinder - constant angular velocity of the inner cylinder - r* dimensionless radial coordinate r/b - * dimensionless angular velocity of the liquid - K fluid consistency index - n flow behaviour index - dimensionless temperature rise (T–T 0)/T 0 - T temperature of measured liquid (K) - T 0 temperature of the thermostated bath - Br Brinkman criterion - f thermal conductivity of liquid - C constant of integration - coefficient of sensitivity in consistency-temperature law - coefficient of sensitivity divided by flow behaviour index: /n - (r*) dimensionless temperature function - coefficient of temperature rise; =Br· - ratio of the radii of inner and outer cylinder - T(1) temperature on the inner wall of the outer cylinder, i.e. for r*=1 - outer cylinder wall thickness - coefficient of heat transfer - q heat flux - k overall heat transfer coefficient - h height of measured liquid - s thermal conductivity of the outer cylinder - (1) derivative of the dimensionless temperature function at point r*=1 - dimensionless heat transfer constant - i (r*) dimensional temperature function calculated for isothermal wall; T(1)=T 0 - dynamic viscosity - i () maximum value of the dimensionless temperature function - dimensionless symbol — ratio of C/C 0 - D rate of shear - shear stress - rate of shear (not considering dissipation) - shear stress (not considering dissipation) - D + rate of shear corrected for the inner cylinder temperature - + shear stress on the inner cylinder obtained by measurement on the rheometer used - j rate of shear on the inner cylinder for j-th measurement referred to a single constant temperature  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号