首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
In this paper, we consider the fault-tolerant concave facility location problem (FTCFL) with uni- form requirements. By investigating the structure of the FTCFL, we obtain a modified dual-fitting bifactor approximation algorithm. Combining the scaling and greedy argumentation technique, the approximation fac- tor is proved to be 1.52.  相似文献   

3.
In this paper, we study uniform hard capacitated facility location problem. The standard LP for the problem is known to have an unbounded integrality gap. We present constant factor approximation by rounding a solution to the standard LP with a slight (1+ϵ) violation in the capacities.Our result shows that the standard LP is not too bad.Our algorithm is simple and more efficient as compared to the strengthened LP-based true approximation that uses the inefficient ellipsoid method with a separation oracle. True approximations are also known for the problem using local search techniques that suffer from the problem of convergence. Moreover, solutions based on standard LP are easier to integrate with other LP-based algorithms.The result is also extended to give the first approximation for uniform hard capacitated k-facility location problem violating the capacities by a factor of (1+ϵ) and breaking the barrier of 2 in capacity violation. The result violates the cardinality by a factor of 21+ϵ.  相似文献   

4.
The capacitated facility location problem (CFLP) is a well-known combinatorial optimization problem with applications in distribution and production planning. It consists in selecting plant sites from a finite set of potential sites and in allocating customer demands in such a way as to minimize operating and transportation costs. A number of solution approaches based on Lagrangean relaxation and subgradient optimization has been proposed for this problem. Subgradient optimization does not provide a primal (fractional) optimal solution to the corresponding master problem. However, in order to compute optimal solutions to large or difficult problem instances by means of a branch-and-bound procedure information about such a primal fractional solution can be advantageous. In this paper, a (stabilized) column generation method is, therefore, employed in order to solve a corresponding master problem exactly. The column generation procedure is then employed within a branch-and-price algorithm for computing optimal solutions to the CFLP. Computational results are reported for a set of larger and difficult problem instances.  相似文献   

5.
The Capacitated Facility Location Problem (CFLP) is to locate a set of facilities with capacity constraints, to satisfy at the minimum cost the order-demands of a set of clients. A multi-source version of the problem is considered in which each client can be served by more than one facility. In this paper we present a reformulation of the CFLP based on Mixed Dicut Inequalities, a family of minimum knapsack inequalities of a mixed type, containing both binary and continuous (flow) variables. By aggregating flow variables, any Mixed Dicut Inequality turns into a binary minimum knapsack inequality with a single continuous variable. We will refer to the convex hull of the feasible solutions of this minimum knapsack problem as the Mixed Dicut polytope. We observe that the Mixed Dicut polytope is a rich source of valid inequalities for the CFLP: basic families of valid CFLP inequalities, like Variable Upper Bounds, Cover, Flow Cover and Effective Capacity Inequalities, are valid for the Mixed Dicut polytope. Furthermore we observe that new families of valid inequalities for the CFLP can be derived by the lifting procedures studied for the minimum knapsack problem with a single continuous variable. To deal with large-scale instances, we have developed a Branch-and-Cut-and-Price algorithm, where the separation algorithm consists of the complete enumeration of the facets of the Mixed Dicut polytope for a set of candidate Mixed Dicut Inequalities. We observe that our procedure returns inequalities that dominate most of the known classes of inequalities presented in the literature. We report on computational experience with instances up to 1000 facilities and 1000 clients to validate the approach.  相似文献   

6.
In this paper we propose a new integer programming formulation for the multilevel facility location problem and a novel 3-approximation algorithm based on LP-rounding. The linear program that we use has a polynomial number of variables and constraints, thus being more efficient than the one commonly used in the approximation algorithms for these types of problems.  相似文献   

7.
We consider a generalization of the classical facility location problem, where we require the solution to be fault-tolerant. In this generalization, every demand point j must be served by rj facilities instead of just one. The facilities other than the closest one are “backup” facilities for that demand, and any such facility will be used only if all closer facilities (or the links to them) fail. Hence, for any demand point, we can assign nonincreasing weights to the routing costs to farther facilities. The cost of assignment for demand j is the weighted linear combination of the assignment costs to its rj closest open facilities. We wish to minimize the sum of the cost of opening the facilities and the assignment cost of each demand j. We obtain a factor 4 approximation to this problem through the application of various rounding techniques to the linear relaxation of an integer program formulation. We further improve the approximation ratio to 3.16 using randomization and to 2.41 using greedy local-search type techniques.  相似文献   

8.
In this paper, we present a cut-and-solve (CS) based exact algorithm for the Single Source Capacitated Facility Location Problem (SSCFLP). At each level of CS’s branching tree, it has only two nodes, corresponding to the Sparse Problem (SP) and the Dense Problem (DP), respectively. The SP, whose solution space is relatively small with the values of some variables fixed to zero, is solved to optimality by using a commercial MIP solver and its solution if it exists provides an upper bound to the SSCFLP. Meanwhile, the resolution of the LP of DP provides a lower bound for the SSCFLP. A cutting plane method which combines the lifted cover inequalities and Fenchel cutting planes to separate the 0–1 knapsack polytopes is applied to strengthen the lower bound of SSCFLP and that of DP. These lower bounds are further tightened with a partial integrality strategy. Numerical tests on benchmark instances demonstrate the effectiveness of the proposed cutting plane algorithm and the partial integrality strategy in reducing integrality gap and the effectiveness of the CS approach in searching an optimal solution in a reasonable time. Computational results on large sized instances are also presented.  相似文献   

9.
随机容错设施选址问题的原始-对偶近似算法   总被引:2,自引:0,他引:2  
研究两阶段随机容错设施选址问题,其中需要服务的顾客在第二阶段出现(在第一阶段不知道).两个阶段中每个设施的开设费用可以不同,设施的开设依赖于阶段和需要服务的顾客集合(称为场景).并且在出现的场景里的每个顾客都有相同的连接需求,即每个顾客需要由r个不同的设施服务.给定所有可能的场景及相应的概率,目标是在两个阶段分别选取开设的设施集合,将出现场景的顾客连接到r个不同的开设设施上,使得包括设施费用和连接费用的总平均费用最小.根据问题的特定结构,给出了原始。对偶(组合)3-近似算法.  相似文献   

10.
Esra Karasakal  Ahmet Silav 《TOP》2016,24(1):206-232
In this study, we present a bi-objective facility location model that considers both partial coverage and service to uncovered demands. Due to limited number of facilities to be opened, some of the demand nodes may not be within full or partial coverage distance of a facility. However, a demand node that is not within the coverage distance of a facility should get service from the nearest facility within the shortest possible time. In this model, it is assumed that demand nodes within the predefined distance of opened facilities are fully covered, and after that distance the coverage level decreases linearly. The objectives are defined as the maximization of full and partial coverage, and the minimization of the maximum distance between uncovered demand nodes and their nearest facilities. We develop a new multi-objective genetic algorithm (MOGA) called modified SPEA-II (mSPEA-II). In this method, the fitness function of SPEA-II is modified and the crowding distance of NSGA-II is used. The performance of mSPEA-II is tested on randomly generated problems of different sizes. The results are compared with the solutions of the most well-known MOGAs, NSGA-II and SPEA-II. Computational experiments show that mSPEA-II outperforms both NSGA-II and SPEA-II.  相似文献   

11.
We consider the stochastic version of the facility location problem with service installation costs. Using the primal-dual technique, we obtain a 7-approximation algorithm.  相似文献   

12.
The network substitution problem is to substitute an existing network for a new network so that to minimize the cost of exploiting the existing network during the period when the new network is being constructed. We show that this problem is NP-hard, and propose a 2-approximation algorithm for solving it.  相似文献   

13.
We consider a healthcare facility location problem in which there are two types of patients, low-income patients and middle- and high-income patients. The former can use only public facilities, while the latter can use both public facilities and private facilities. We focus on the problem of determining locations of public healthcare facilities to be established within a given budget and allocating the patients to the facilities for the objective of maximizing the number of served patients while considering preference of the patients for the public and private facilities. We present an integer programming formulation for the problem and develop a heuristic algorithm based on Lagrangian relaxation and subgradient optimization methods. Results of computational experiments on a number of problem instances show that the algorithm gives good solutions in a reasonable computation time and may be effectively used by the healthcare authorities of the government.  相似文献   

14.
In this paper, we study the dynamic facility location problem with submodular penalties (DFLPSP). We present a combinatorial primal-dual 3-approximation algorithm for the DFLPSP.  相似文献   

15.
The universal facility location problem generalizes several classical facility location problems, such as the uncapacitated facility location problem and the capacitated location problem (both hard and soft capacities). In the universal facility location problem, we are given a set of demand points and a set of facilities. We wish to assign the demands to facilities such that the total service as well as facility cost is minimized. The service cost is proportional to the distance that each unit of the demand has to travel to its assigned facility. The open cost of facility i depends on the amount z of demand assigned to i and is given by a cost function \(f_i(z)\). In this work, we extend the universal facility location problem to include linear penalties, where we pay certain penalty cost whenever we refuse serving some demand points. As our main contribution, we present a (\(7.88+\epsilon \))-approximation local search algorithm for this problem.  相似文献   

16.
Suppose the plane is divided by a straight line into two regions with different norms. We want to find the location of a single new facility such that the sum of the distances from the existing facilities to this point is minimized. This is in fact a non-convex optimization problem. The main difficulty is caused by finding the distances between points on different sides of the boundary line. In this paper we present a closed form solution for finding these distances. We also show that the optimal solution lies in the rectangular hull of the existing points. Based on these findings then, an efficient big square small square (BSSS) procedure is proposed.  相似文献   

17.
A 2-approximation algorithm is presented for some NP-hard data analysis problem that consists in partitioning a set of Euclidean vectors into two subsets (clusters) under the criterion of minimum sum-of-squares of distances from the elements of clusters to their centers. The center of the first cluster is the average value of vectors in the cluster, and the center of the second one is the origin.  相似文献   

18.
19.
Journal of Heuristics - In this paper, we describe a matheuristic to solve the stochastic facility location problem which determines the location and size of storage facilities, the quantities of...  相似文献   

20.
A 2.75-approximation algorithm is proposed for the unconstrained traveling tournament problem, which is a variant of the traveling tournament problem. For the unconstrained traveling tournament problem, this is the first proposal of an approximation algorithm with a constant approximation ratio. In addition, the proposed algorithm yields a solution that meets both the no-repeater and mirrored constraints. Computational experiments show that the algorithm generates solutions of good quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号