首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The apparent molar volumes (V φ ) of glycine, L-alanine and L-serine in aqueous 0 to 4 mol⋅kg−1 N-methylacetamide (NMA) solutions have been obtained by density measurement at 298.15 K. The standard partial molar volumes (Vf0)V_{\phi}^{0}) and standard partial molar volumes of transfer (DtrVf0)\Delta_{\mathrm{tr}}V_{\phi}^{0}) have been determined for these amino acids. It has been show that hydrophilic-hydrophilic interactions between the charged groups of the amino acids and the –CONH– group of NMA predominate for glycine and L-serine, but for L-alanine the interactions between its side group (–CH3) and NMA predominate. The –CH3 group of L-alanine has much more influence on the value of DtrVf0\Delta_{\mathrm{tr}}V_{\phi}^{0} than that of the –OH group of L-serine. The results have been interpreted in terms of a co-sphere overlap model.  相似文献   

2.
The mixing enthalpies of N,N??-hexamethylenebisacetamide (HMBA) with l-alanine and l-serine in aqueous glucose solutions have been determined by using mixing-flow isothermal microcalorimetry along with their dilution enthalpies at the temperature of 298.15?K. These results can be used to obtain the heterotactic enthalpic interaction coefficients (h xy , h xxy , and h xyy ) in the range of the glucose molality, (0 to 1.5) mol?kg?1, according to the McMillan?CMayer theory. Combining our previous research results for glycine (see Liu et al. in J. Chem. Eng. Data 55, 5258?C5263, 2010), we find that the heterotactic enthalpic pairwise interaction coefficients h xy between HMBA and the investigated amino acids in aqueous glucose solutions are all positive and reach maximum values at about 0.3 mol?kg?1 glucose. In addition, the order for the value of h xy of the three amino acids in pure water and aqueous solution of the same glucose molality is h xy (l-alanine)>h xy (l-serine)>h xy (glycine). All variations of the heterotactic enthalpic pairwise interaction coefficients with the molalities of glucose in the quaternary systems are discussed in terms of solute?Csolute and solute?Csolvent interactions.  相似文献   

3.
Enthalpies of solution and apparent molar volumes have been determined for propionamide in aqueous methanol, ethanol and propanol solutions at 298.15 K using a C-80 microcalorimeter and a DMA60/602 vibrating-tube digital densimeter. The enthalpic and volumetric interaction coefficients have been calculated. Using the present results along with results from previous studies for formamide, the pair-interaction coefficients are discussed from the perspective of dipole-dipole and structural interactions. In addition, the triplet interaction coefficients are interpreted by using the solvent-separated association mechanism.  相似文献   

4.
Enthalpies of dilution of N,N′-hexamethylenebisacetamide in water and aqueous alkali halide solutions at the concentration of 0.150 mol⋅kg−1 (approximately the concentration of physiological saline) have been determined by isothermal titration microcalorimetry at 298.15 K. The enthalpic interaction coefficients in the solutions have been calculated according to the excess enthalpy concept based on the calorimetric data. The values of enthalpic pair-wise interaction coefficients (h 2) of the solute in aqueous solutions of different salts were discussed in terms of the different alkali salt ions and weak interactions of the diluted component with coexistent species as well as the change in solvent structure caused by ions.  相似文献   

5.
Densities of aqueous solutions of L-glutamic acid and magnesium-L-glutamate were determined from T=288.15 to 333.15 K at 5 K temperature intervals. The measured densities were used to evaluate the apparent molar volumes, V 2,φ (m,T), the cubic expansion coefficients, α(m,T), and the changes of isobaric heat capacities with respect to pressure, ( C p / p) T,m . They were qualitatively correlated with changes in the structure of water that occur when L-glutamic acid or magnesium-L-glutamate are present.  相似文献   

6.
The apparent molar volumes, V φ , of two series of homologous aliphatic carboxylic acids, H(CH2) n COOH [n=0–5] and (CH2) n (COOH)2 [n=0–5], were determined in dilute aqueous solutions by density measurements at T=298.15 K. Densities were measured using a vibrating-tube densimeter (DMA 5000, Anton Paar, Austria) at T=298.15 K. These results were used to calculate the apparent molar volumes of each solute over the concentration range 0.0050≤m/(mol⋅kg−1)≤0.3000. Values of the apparent molar volumes of undissociated acids Vf(u)0V_{\phi (u)}^{0} were also calculated. The variation of Vf(u)0V_{\phi (u)}^{0} was determined as a function of the aliphatic chain length of the studied carboxylic acids.  相似文献   

7.
Density measurements of good precision are reported for aqueous and aqueous salt (KBr) solutions containing 2,2,2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) (~0.009 to ~0.24 mol·kg?1) for the binary systems and for the ternary system with ~0.1 mol·kg?1 2,2,2-cryptand and varying KBr concentrations (~0.06 to ~ 0.16 mol·kg?1) at 298.15 K. The density data have been used to study the variation of apparent molar volume (\( \varphi_{V} \)) of 2,2,2-cryptand and of KBr as a function of concentration. 2,2,2-Cryptand is a diamine and hence it is hydrolyzed in aqueous solutions and needs an appropriate methodology to obtain meaningful thermodynamic properties. We have adopted a method of hydrolysis correction developed initially by Cabani et al. and later by Kaulgud et al. to analyze our volumetric data for the aqueous solutions. The method is described and we were successful in obtaining the limiting partial molar volume of the bare (free) cryptand in water at 298.15 K. Volumes of ionization as well as volumes of complexation (with KBr) are calculated. Estimations of the apparent molar volume of 2,2,2-cryptand in CCl4 are also reported. There is a loss in volume for the cryptand on transferring it from CCl4 to water. The volume changes due to ionization for the cryptand in water are calculated to be –20.5 and –0.6 cm3·mol?1 for the mono- and di-protonation equilibria respectively, while the volume of complexation for K+ is +24.5 cm3·mol?1. The results are discussed in terms of conformation, protonation equilibria and selective encapsulation of K+ ions in cryptand cavities. The solution volume properties seem to depend upon water–solute interaction as well on the solute–solute association because of hydrophobic interactions caused by lowering of the charge density on formation of cryptand-K+ species in solution.  相似文献   

8.
9.
Heats of solution, Δsol H m , of L-cysteine, L-serine and L-asparagine amino acids have been measured at different concentrations of aqueous ethanol, propanol and 2-propanol at 298.15 K using solvation calorimetry. These data are compared with the results reported earlier for L-alanine in ethanol. The enthalpic coefficients, h xy , of the solute-organic cosolvent pair interaction in water have been obtained from the McMillan-Mayer approach and the data have been interpreted in terms of various interactions and changes in solvent structure.  相似文献   

10.
11.
In this work, the partial molar volumes of glycine and dl-alanine in aqueous solutions of ammonium sulfate at 0.0, 0.1, 0.3, 0.7, and 1.0 mol·kg?1 are determined between 278.15 and 308.15 K. Transfer volumes were obtained, which are larger for glycine than dl-alanine. On the contrary, the hydration numbers are higher for dl-alanine than glycine, and dehydration of the amino acids is observed with increasing temperature or salt molality. The data suggest that interactions between ion and charged/hydrophilic groups are predominant and, by applying the methodology proposed by Friedman and Krishnan, it was concluded that they are mainly pairwise. A group-contribution scheme has been successfully applied to the pairwise volumetric interaction coefficient. Finally, the dehydration effect on glycine, alanine and serine in the presence of different electrolytes has been rationalized in terms of the charge density and a parameter accounting for the cation’s hydration.  相似文献   

12.
Sound speeds have been measured for aqueous solutions of the nucleoside thymidine at T = 298.15 K and at the pressures p = (10, 20, 40, 60, 80, and 100) MPa. The partial molar volumes at infinite dilution, $ V_{2}^{\text{o}} $ , the partial molar isentropic compressions at infinite dilution, $ K_{S,2}^{\text{o}} $ , and the partial molar isothermal compressions at infinite dilution, $ K_{T,2}^{\text{o}} $ $ \{ K_{T,2}^{\text{o}} = - (\partial V_{2}^{\text{o}} /\partial p)_{T} \} $ , have been derived from the sound speeds at elevated pressures using methods described in our previous work. The $ V_{2}^{\text{o}} $ and $ K_{T,2}^{\text{o}} $ results were rationalized in terms of the likely interactions between thymidine and the aqueous solvent. The $ V_{2}^{\text{o}} $ results were also compared with those calculated using the revised Helgeson–Kirkham–Flowers (HKF) equation of state.  相似文献   

13.
Densities of dilute solutions of water in acetone, with solute mole fractions ranging up to 0.03, have been measured with an error of 8 ×10−6 g⋅cm−3, at 288.15, 298.15, 308.15 and 318.15 K, using a precision vibrating-tube densimeter. The partial molar volumes of the solute water (down to infinite dilution) and solvent acetone, as well as the excess molar volumes of the specified mixtures, have been calculated. The effects of the solute concentration and temperature on the volume packing changes, caused by solvation of water in acetone, have been considered.  相似文献   

14.
15.
Russian Journal of Physical Chemistry A - The densities of aqueous solutions of acetamide up to a mole fraction of x2 = 0.3875 are measured over a wide range of temperatures (274.15–333.15) K...  相似文献   

16.
Densities have been measured by an oscillating-tube densimeter for aqueous solutions of glycylglycine and glycylglycylglycine in aqueous xylitol solutions with xylitol mass fractions ranging from 0 to 0.15 at 298.15 K. Apparent molar volumes and limiting partial molar volumes have been used to calculate the corresponding transfer volumes from water to different concentrations of xylitol + water mixtures. The results are interpreted in terms of the cosphere overlap model.  相似文献   

17.
As proteins and other biomolecules consisting of amino acid residues require external additives for their dissolution and recrystallization, it is important to have information about how such additives interact with amino acids. Therefore we have studied the interactions of simple model amino acids with the additives urea and guanidine hydrochloride in aqueous solutions at 298.15 K, using vapor pressure osmometry. During the measurements, the concentration of urea was fixed as ∼2 mol⋅kg−1 and that of guanidine hydrochloride was fixed as ∼1 mol⋅kg−1 whereas the concentrations of amino acids were varied. The experimental water activity data were processed to get the individual activity coefficients of all the three components in the ternary mixture. Further, the activity coefficients were used to get the excess Gibbs energies of solutions and Gibbs energies for transfer of either amino acids from water to aqueous denaturant solutions or denaturant from water to aqueous amino acid solutions. An application of the McMillan-Mayer theory of solutions through virial expansion of transfer Gibbs energies was made to get pair and triplet interaction parameter whose sign and magnitude yielded information about amino acid–denaturant interactions, relative to their interactions with water. The pair interaction parameters have been further used to obtain salting constants and in turn the thermodynamic equilibrium constant values for the amino acid–denaturant mixing process in aqueous solutions at 298.15 K. The results have been explained in terms of hydrophobic hydration, hydrophobic interactions and amino acid–denaturant binding.  相似文献   

18.
Densities of aqueous solutions of tetramethyl-bis-urea (TMbU) with solute mole fractions ranging up to 7.0×10−2 have been measured with an uncertainty of 1.5×10−5 g⋅cm−3, at 278.15, 298.15, 318.15, and 338.15 K using a vibrating-tube densimeter. The partial molar volumes and expansibilities of TMbU (down to the infinite dilution) and water have been computed. The effects of solute concentration and temperature on the volume packing changes, caused by dissolution (and hydration) of TMbU in an aqueous medium, have been considered.  相似文献   

19.
From measurements of the surface tension, density, viscosity and light scattering of aqueous solutions of methanol, ethanol and propanol at 293?K, their activity in the surface monolayer, surface excess concentration, and apparent and partial molar volume were determined. The surface excess concentration of alcohols at the water?Cair interface was determined from the Gibbs equation by using both the alcohol's activity and their molar fraction in the bulk phase and recalculated by using the Guggenheim?CAdam equation. The values of the surface excess concentration determined from the Gibbs equation were also applied to determine the standard Gibbs energy of alcohol adsorption at the water?Cair interface from Langmuir??s equation and compared to those determined from that of Aronson and Rosen.  相似文献   

20.
Conductivities were measured for the ternary systems NaNO3–KNO3–H2O, NaCl–BaCl2–H2O, NaCl–LaCl3–H2O, and their binary subsystems NaNO3–H2O, KNO3–H2O, NaCl–H2O, BaCl2–H2O, and LaCl3–H2O at (293.15, 298.15 and 303.15) K. The results were used to verify the generalized Young’s rule and the semi-ideal solution theory. Comparison of the results shows that the average relative differences between the predicted and measured conductivities are ≤4.2×10−3 for NaNO3–KNO3–H2O, ≤4.6×10−3 for NaCl–BaCl2–H2O, and ≤8.9×10−3 for NaCl–LaCl3–H2O, indicating that the generalized Young’s rule and the semi-ideal solution theory can provide good predictions for the conductivity of mixed electrolyte solutions in terms of the data from their binary subsystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号