首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
LetM be the boundary of a strongly pseudoconvex domain in \(\mathbb{C}^n \) ,n≥4 and ω be an open subset inM such that ?ω is the intersection ofM with a flat hypersurface. We establish theL 2 existence theorems of the \(\bar \partial _b - Neumann\) problem on ω. In particular, we prove that the \(\bar \partial _b - Laplacian\) \(\square _b = \bar \partial _b \bar \partial _b^* + \bar \partial _b^* \bar \partial _b \) equipped with a pair of natural boundary conditions, the so-called \(\bar \partial _b - Neumann\) boundary conditions, has closed range when it acts on (0,q) forms, 1≤qn?3. Thus there exists a bounded inverse operator for \(\square _b \) , the \(\bar \partial _b - Neumann\) operatorN b, and we have the following Hodge decomposition theorem on ω for \(\bar \partial _b \bar \partial _b^* N_b \alpha + \bar \partial _b^* \bar \partial _b N_b \alpha \) , for any (0,q) form α withL 2(ω) coefficients. The proof depends on theL p regularity of the tangential Cauchy-Riemann operators \(\bar \partial _b u = \alpha \) on ω?M under the compatibility condition \(\bar \partial _b \alpha = 0\) , where α is a (p, q) form on ω, where 1≤qn?2. The interior regularity ofN b follows from the fact that \(\square _b \) is subelliptic in the interior of ω. The operatorN b induces natural questions on the regularity up to the boundary ?ω. Near the characteristic point of the boundary, certain compatibility conditions will be present. In fact, one can show thatN b is not a compact operator onL 2(ω).  相似文献   

3.
We obtain necessary and sufficient conditions for the existence of a certain class of solutions of the differential equation $$ (|y^{(n - 1)} |^{\lambda - 1} y^{(n - 1)} )' = \alpha _0 p(t)e^{\sigma y} $$ , where α 0 ∈ {?1, 1}, σ, λR \ {0}, and p: [a, ω[→]0,+∞[(?∞ < a < ω ≤ + ∞) is a continuously differentiable function. We also establish asymptotic representations of such solutions.  相似文献   

4.
5.
Given some smooth vector fields X 1,X 2,…,X m on a compact manifold M, if they satisfy Hörmander’s condition, we establish global gradient estimates for the positive smooth solutions to the semi-linear hypoelliptic equations $$Lu+au\log u+bu=\partial_tu, \quad \mbox{on} \ M\times[0,\infty) $$ and $$Lu+au\log u+bu=0, \quad \mbox{on} \ M, $$ where a,b are constants, and $L=\sum_{i}X_{i}^{2}-X_{0}$ . We partially generalize the results of Cao and Yau (Math. Z. 211:485–504, 1992).  相似文献   

6.
We obtain a sharp Remez inequality for the trigonometric polynomial T n of degree n on [0,2π): $$\|T_n \|_{L_\infty([0,2\pi))} \le \biggl(1+2\tan^2 \frac{n\beta}{4m} \biggr) { \|T_n \|_{L_\infty ([0,2\pi) \setminus B )}}, $$ where $\frac{2\pi}{m}$ is the minimal period of T n and $|B|=\beta<\frac {2\pi m}{n}$ is a measurable subset of $\mathbb {T}$ . In particular, this gives the asymptotics of the sharp constant in the Remez inequality: for a fixed n, $$\mathcal{C}(n, \beta)=1+ \frac{(n\beta)^2}{8} +O \bigl(\beta^4\bigr), \quad\beta \to0, $$ where $$\mathcal{C}(n,\beta):= \sup_{|B|=\beta}\sup_{T_n} \frac{ \|T_n \|_{L_\infty([0,2\pi ))}}{ \|T_n \|_{L_\infty ([0,2\pi) \setminus B )}}. $$ We also obtain sharp Nikol’skii’s inequalities for the Lorentz spaces and net spaces. Multidimensional variants of Remez and Nikol’skii’s inequalities are investigated.  相似文献   

7.
For \(M = \left( {\begin{array}{*{20}c} {A B} \\ {C D} \\ \end{array} } \right)\) ∈ Γ(n)=Sp(n?) andZ=Z+iY,Y > 0, set $$M\left\langle Z \right\rangle = (AZ + B)(CZ + D)^{ - 1} = X_M + iY_M ;M\{ Z\} = CZ + D.$$ Denote with Γ n (n) the subgroup defined byC=0. Forr∈? and a complex variable ω form the Eisenstein series $$E(n,r,Z,\omega ) = \sum\limits_{M\varepsilon I'_n (n)\backslash \Gamma (n)} {(DetM\{ Z\} )^{ - 2r} (DetY_M )^{\omega - r} } .$$ It is proved thatE(n, r, Z, ω) can be meromorphically continued to the ω-plane and satisfies a functional equation. Forr=1, 2, [(n?1)/2], [(n+1)/2] the functionE(n, r, Z, ω) is holomorphic at ω-r. For 3≤r≤[(n?3)/2] the functionE(n, r, Z, ω) may have poles at ω=r. But the pole-order is for two smaller than known until now. This result says especially that the Eisenstein series has Hecke summation forr=1, 2, [(n?1)/2], [(n+1)/2].  相似文献   

8.
Let $\mathcal{K}$ be the family of graphs on ω1 without cliques or independent subsets of sizew 1. We prove that
  1. it is consistent with CH that everyGε $\mathcal{K}$ has 2ω many pairwise non-isomorphic subgraphs,
  2. the following proposition holds in L: (*)there is a Gε $\mathcal{K}$ such that for each partition (A, B) of ω1 either G?G[A] orG?G[B],
  3. the failure of (*) is consistent with ZFC.
  相似文献   

9.
Let M be a complete noncompact Riemannian manifold. We consider gradient estimates for the positive solutions to the following nonlinear parabolic equation $ \frac{\partial u}{\partial t} = \Delta _{f}u +au\,{\rm log}\, u + bu$ on ${M \times [0, + \infty)}Let M be a complete noncompact Riemannian manifold. We consider gradient estimates for the positive solutions to the following nonlinear parabolic equation
\frac?u?t = Dfu +au log u + bu \frac{\partial u}{\partial t} = \Delta _{f}u +au\,{\rm log}\, u + bu  相似文献   

10.
Let (E, ≦) be a vector lattice and E + be the set of all nonnegative elements of E. We investigate M-functionals from E + into ?+, that is functions A: E + → ?+ such that $$ \Lambda (f \vee g) = \Lambda (f) \vee \Lambda (g),\Lambda (\alpha f) = \alpha \Lambda (f) $$ for α ≧ 0 and f, g ? E +. Let X be a set and Σ be an algebra of subsets of X. By an M-measure we understand the function μ: Σ → ?+ such that μ( $ \not 0 $ ) = 0 and $$ \mu (A \cup B) = \mu (A) \vee \mu (B)forA,B \in \Sigma ). $$ The main result of the paper is a Riesz type theorem. We prove that every M-functional on C(X, ?)+ can be expressed in terms of M-measure.  相似文献   

11.
We consider elliptic self-adjoint differential operators L of order 2m in a bounded region D? Rn. An asymptotic formula for the function N(λ) = \(N(\lambda ) = \sum\limits_{\lambda _n< \lambda } 1 \) the number of eigenvalues of the operator L less than A. is proved: $$N(\lambda ) = M_0 \lambda ^{n/2m} + o(\lambda ^{n/2m} )$$ whereλ → + ∞ and M0 is the following constant: $$M_0 = \frac{{V_D }}{{(2\pi )^n \Gamma (1 + n/2m)}}\int_{R_n } {e^{ - L(s)} ds} .$$   相似文献   

12.
It is proved that the limit $$\mathop {\lim }\limits_{\Delta \to \infty } \mathop {\sup }\limits_\gamma \tfrac{1}{\Delta }\int_0^\Delta {f(\gamma (t))dt} $$ , wheref: ? → ? is a locally integrable (in the sense of Lebesgue) function with zero mean and the supremum is taken over all solutions of the generalized differential equation γ ∈ [ω1, ω2], coincides with the limit $$\mathop {\lim }\limits_{T \to \infty } \mathop {\sup }\limits_{c \geqslant 0} \varphi _f (k,{\mathbf{ }}T,{\mathbf{ }}c)$$ , where $$\varphi _f = \frac{{(k - 1)\bar I_f (T,c)}}{{1 + (k - 1)\bar \lambda _f (T,c)}},k = \frac{{\omega _2 }}{{\omega _1 }}$$ . Here ¯λf = λf /T, ¯ If =If/T, and λf is the Lebesgue measure of the set $$\{ \gamma \in [\gamma _0 ,\gamma _0 + T]:f(\gamma ) \geqslant c\} = A_f ,I_f = \int_{A_f } {f(\gamma )d\gamma } $$ . It is established that this limit always exists for almost-periodic functionsf.  相似文献   

13.
We study Sobolev-type metrics of fractional order s ≥ 0 on the group Diff c (M) of compactly supported diffeomorphisms of a manifold M. We show that for the important special case M = S 1, the geodesic distance on Diff c (S 1) vanishes if and only if ${s\leq\frac12}$ . For other manifolds, we obtain a partial characterization: the geodesic distance on Diff c (M) vanishes for ${M=\mathbb{R}\times N, s < \frac12}$ and for ${M=S^1\times N, s\leq\frac12}$ , with N being a compact Riemannian manifold. On the other hand, the geodesic distance on Diff c (M) is positive for ${{\rm dim}(M)=1, s > \frac12}$ and dim(M) ≥ 2, s ≥ 1. For ${M=\mathbb{R}^n}$ , we discuss the geodesic equations for these metrics. For n = 1, we obtain some well-known PDEs of hydrodynamics: Burgers’ equation for s = 0, the modified Constantin–Lax–Majda equation for ${s=\frac12}$ , and the Camassa–Holm equation for s = 1.  相似文献   

14.
We investigate the translation equation $$F(s+t, x) = F(s, F(t, x)),\quad \quad s,t\in{\mathbb{C}},\qquad\qquad\qquad\qquad({\rm T})$$ in ${\mathbb{C}\left[\kern-0.15em\left[{x}\right]\kern-0.15em\right]}$ , the ring of formal power series over ${\mathbb{C}}$ . Here we restrict ourselves to iteration groups of type II, i.e. to solutions of (T) of the form ${F(s, x) \equiv x + c_k(s)x^k {\rm mod} x^{k + 1}}$ , where k ≥ 2 and c k ≠ 0 is necessarily an additive function. It is easy to prove that the coefficient functions c n (s) of $$F(s, x) = x + \sum_{n \ge q k}c_n(s)x^n$$ are polynomials in c k (s). It is possible to replace this additive function c k by an indeterminate. In this way we obtain a formal version of the translation equation in the ring ${(\mathbb{C}[y])\left[\kern-0.15em\left[{x}\right]\kern-0.15em\right]}$ . We solve this equation in a completely algebraic way, by deriving formal differential equations or an Aczél–Jabotinsky type equation. This way it is possible to get the structure of the coefficients in great detail which are now polynomials. We prove the universal character (depending on certain parameters, the coefficients of the infinitesimal generator H of an iteration group of type II) of these polynomials. Rewriting the solutions G(y, x) of the formal translation equation in the form ${\sum_{n\geq 0}\phi_n(x)y^n}$ as elements of ${(\mathbb{C}\left[\kern-0.15em\left[{x}\right]\kern-0.15em\right])\left[\kern-0.15em\left[{y}\right]\kern-0.15em\right]}$ , we obtain explicit formulas for ${\phi_n}$ in terms of the derivatives H (j)(x) of the generator ${H}$ and also a representation of ${G(y, x)}$ as a Lie–Gröbner series. Eventually, we deduce the canonical form (with respect to conjugation) of the infinitesimal generator ${H}$ as x k + hx 2k-1 and find expansions of the solutions ${G(y, x) = \sum_{r\geq 0} G_r(y, x)h^r}$ of the above mentioned differential equations in powers of the parameter h.  相似文献   

15.
We study discrete Sobolev spaces with symmetric inner product $$\left\langle {f,g} \right\rangle _\alpha = \int_{ - 1}^1 {f g d\mu _\alpha } + M[f(1)g(1) + f( - 1)g( - 1)] + K[f'(1)g'(1) + f'( - 1)g'( - 1)]$$ , where M ≥ 0, k ≥ 0, and $$d\mu _\alpha (x) = \frac{{\Gamma (2\alpha + 2)}}{{2^{2\alpha + 1} \Gamma ^2 (\alpha + 1)}}(1 - x^2 )^\alpha dx, \alpha > - 1$$ , is the Gegenbauer probability measure. We obtain the solution of the following extremal problem: Calculate $$\mathop {\inf }\limits_{a_0 ,a_1 ,...,a_{N - r} } \left\{ {\langle P_N^{(r)} ,P_N^{(r)} \rangle _\alpha ,1 \leqslant r \leqslant N - 1, P_N^{(r)} (x) = \sum\limits_{j = N - r + 1}^N {a_j^0 x^j } + \sum\limits_{j = 0}^{N - r} {a_j x^j } } \right\}$$ , where the a j 0 , j = N ? r + 1, N ? r + 2, ..., N ? 1, N, a N 0 > 0, are fixed numbers, and find the extremal polynomial.  相似文献   

16.
The general form of Benjamin-Bona-Mahony equation (BBM) is $u_t + au_x + bu_{xxt} + (g(u))_x = 0,a,b \in \mathbb{R},$ where ab ≠ 0 and g(u) is a C 2-smooth nonlinear function, has been proposed by Benjamin et al. in [1] and describes approximately the unidirectional propagation of long wave in certain nonlinear dispersive systems. In this payer, we consider a new class of Benjamin-Bona-Mahony equation (BBM) $u_t + au_x + bu_{xxt} + (pe^u + qe^{ - u} )_x = 0,a,b,p,q \in \mathbb{R},$ where ab ≠ 0, and qp ≠ 0, and we obtain new exact solutions for it by using the well-known (G′/G)-expansion method. New periodic and solitary wave solutions for these nonlinear equation are formally derived.  相似文献   

17.
18.
LetN be a sufficiently large even integer and $$\begin{gathered} q \geqslant 1, (l_i ,q) = 1 (i = 1, 2), \hfill \\ l_1 + l_2 \equiv N(\bmod q). \hfill \\ \end{gathered} $$ . It is proved that the equation $$N = p + P_2 ,p \equiv l_1 (\bmod q), P_2 \equiv l_2 (\bmod q)$$ has infinitely many solutions for almost all $q \leqslant N^{\frac{1}{{37}}} $ , wherep is a prime andP 2 is an almost prime with at most two prime factors.  相似文献   

19.
Пустьw(х)∈L[-1, +1] — неотрица тельная функция така я, что $$\frac{{\log ^ + \frac{1}{{w(x)}}}}{{\sqrt {1 - x^2 } }} \in L[ - 1, + 1]$$ и пусть {(р n (х)} — много члены, ортогональные и нормированные с весо мw(x). Мы доказываем следующие две теорем ы, являющиеся обобщен ием одного известного результа та Н. Винера. I. Для каждого δ, 0<δ<1, суще ствует числоB=B(δ, w) тако е, что если $$f_N (x) = \sum\limits_{j = 1}^N {a_j p_{v_j } (x)} $$ причем выполнено сле дующее условие лакун арности $$\begin{gathered} v_{j + 1} - v_j \geqq B(\delta ,w) (j = 1,2,...,N - 1), \hfill \\ v_1 \geqq B(\delta ,w) \hfill \\ \end{gathered} $$ , то для некоторого С(δ, w) и всехh и δ, для которых $$ - 1 \leqq h - \delta< h + \delta \leqq + 1$$ , имеет место неравенс тво $$\int\limits_{ - 1}^1 {|f_N (x)|^2 w(x)dx \leqq C(\delta ,w)} \int\limits_{h - \delta }^{h + \delta } {|f_N (x)|^2 w(x)dx} $$ каковы бы ни былиa j ,N и h. II. Если формальный ряд $$\sum\limits_{j = 1}^\infty {b_j p_{\mu _j } (x)} $$ удовлетворяет услов ию лакунарности μj+1j→∞ и суммируем, например, м етодом Абеля на произвольно малом отрезке [а, Ь] ?[0,1] к ф ункцииf(x) такой, что \(f(x)\sqrt {w(x)} \in L_2 [a,b]\) , то $$\sum\limits_j {|b_j |^2< \infty } $$ Теорема I — это первый ш аг в направлении проб лемы типа Мюнтца-Саса о замкнут ости подпоследовательно сти pvj(x)} последовател ьности {рn(х)} на отрезке [а, Ь] в метрике С[а, Ь] (см. теорему II стать и).  相似文献   

20.
Let Ξ=(ξ i ) l n be a sequence of vectors inR m . The box splineM Ξ is defined as the distribution given by $$M_\Xi :\varphi \to \int_{[0,1]^n } \varphi \left( {\sum\limits_{i = 1}^n {\lambda (i)\xi _i } } \right)d\lambda ,\varphi \in C_c^\infty (R^m ).$$ . Suppose that Ξ contains a basis forR m . ThenM ΞL (R m ). Assume $$\Xi \subset V: = z^m .$$ . Consider the translatesM v :=M Ξ(·?v),vV. It is known that (M v ) V is linearly dependent unless (*) $$|\det Z| = 1forallbasesZ \subset \Xi$$ . This paper demonstrates that under condition (*), (M v ) V is locally linearly independent, i.e., $$\{ M_v ;\sup p M_v \cap A \ne \not 0\}$$ is linearly independent over any open setA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号