首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental eigenvalues of both square and rectangular clamped flat plates were measured using digital spectrum analysis. Individual mode shapes were recorded experimentally using holographic interferometry. Plate spectra showing the first 35 modes of vibration for each of the square and rectangular plates were recorded, allowing the experimentally determined eigenvalues to be compared with published theoretical predictions. Over 25 modes for a square plate and 16 modes for a rectangular plate with aspect ratio of 2/3 were recorded holographically. Selected recorded mode shapes are compared with beam mode shapes as well as with modified Bolotin mode shapes, both of which are popular assumed mode shapes in current numerical techniques. It was found that both of these assumed mode shapes agree favorably with the experimental results. The beam mode shapes agree better in some modes; the modified Bolotin mode shapes agree more favorably in others.  相似文献   

2.
The natural frequencies and the corresponding mode shapes of clamped thin I-shaped plates were experimentally determined by time-averaged holographic interferometry. The test plate was shaped as shown in Fig. 1, and eight kinds of plates were tested by taking a dimensionless length parameter ξ as a parameter. The natural-vibration modes exceeding 200 were identified using the real-time method. The corresponding natural frequencies ranged from 172 to 5606 Hz. In addition, in the case of a rectangular plate, the experimental results were shown to be good agreement with the theoretical ones.  相似文献   

3.
R. Lal  Kumar Yajuvindra 《Meccanica》2012,47(1):175-193
Effect of nonhomogeneity on the vibrational characteristics of thin orthotropic rectangular plates of bilinearly varying thickness has been studied using boundary characteristic orthogonal polynomials in the Rayleigh-Ritz method. The thickness variation is taken as the Cartesian product of linear variations along two concurrent edges of the plate. The orthogonal polynomials in two variables are generated using the Gram-Schmidt process. The nonhomogeneity of the plate material is assumed to arise due to linear variations in Young’s moduli, shear modulus and density of the plate with the in-plane coordinates. Numerical results have been computed for four different combinations of clamped, simply supported and free edges. Effect of thickness variation together with varying values of aspect ratio and nonhomogeneity on the natural frequencies is illustrated for the first three modes of vibration. Three dimensional mode shapes have been presented. Comparison has been made with the known results.  相似文献   

4.
Free transverse vibrations of nonhomogeneous orthotropic rectangular plates with bilinear thickness variation resting on Winkler foundation are presented here using two dimensional boundary characteristic orthogonal polynomials in the Rayleigh-Ritz method on the basis of classical plate theory. Gram-Schmidt process has been used to generate orthogonal polynomials. The nonhomogeneity of the plate is assumed to arise due to linear variations in elastic properties and density of the plate material with the in-plane coordinates. The two dimensional thickness variation is taken as the Cartesian product of linear variations along the two concurrent edges of the plate. Effect of nonhomogeneity parameters, aspect ratio and thickness variation together with foundation parameter on the natural frequencies has been illustrated for the first three modes of vibration for four different combinations of clamped, simply supported and free edges correct to four decimal places. Three dimensional mode shapes for specified plate for all the four boundary conditions have been plotted. A comparison of results in special cases with published one has been presented.  相似文献   

5.
Analytical expression of a new damage measure which relates the strain energy, to the damage location and magnitude, is presented in this paper. The strain energy expression is calculated using modes and natural frequencies of damaged beams that are derived based on single beam analysis considering both decrease in mass and stiffness. Decrease in mass and stiffness are a fallout of geometric discontinuity and no assumptions regarding the physical behavior of damage are made. The method is applicable to beams, with notch like non-propagating cracks, with arbitrary boundary conditions. The analytical expressions derived for mode shapes, curvature shapes, natural frequencies and an improved strain energy based damage measure, are verified using experiments. The improvement in the damage measure is that it is not assumed that the bending stiffness of the damaged beam is constant, and, equal to that of undamaged beam when calculating the strain energy of the entire beam. It is also not assumed that the bending stiffness of the element in which the damage is located is constant.  相似文献   

6.
ABSTRACT

Considerable information is available in the published literature on the free vibration frequencies and mode shapes of rectangular flat plates having two adjacent edges clamped and the other two free. However, no results appear to have been published previously for shallow shells having such edge conditions. The present work uses the Ritz method with displacement components in the form of algebraic polynomials to obtain accurate frequencies. Frequencies are determined for the first eight modes of shallow shells having spherical, cylindrical, and hyperbolic paraboloi-dal curvatures and square planforms. Beginning with the plate, the curvatures are incrementally increased in each case to the limits of shallow  相似文献   

7.
The problem of obtaining free vibration frequencies and mode shapes of rectangular plates resting on combinations of classical (i.e., clamped, simply supported, or free) edge supports is one that has been investigated for more than one hundred years. More recently, the superposition method has been developed for obtaining accurate analytical-type solutions for this family of problems. The object of this paper is to report on the results of numerous experimental tests carefully performed in order to verify the superposition method and associated computer software. Experimental and computed results are compared for a wide range of plate configurations. Very good agreement between theory and experiment has been obtained with regard to both plate natural frequencies and mode shapes. It is concluded that this computational procedure constitutes a powerful new tool for analysis of rectangular plate vibration problems.  相似文献   

8.
In the present paper, the geometric nonlinear formulation is developed for dynamic stiffening of a rectangular plate undergoing large overall motions. The dynamic equations, which take into account the stiffening terms, are derived based on the virtual power principle. Finite element method is employed for discretization of the plate. The simulation results of a rotating rectangular plate obtained by using such geometric nonlinear formulation are compared with those obtained by the conventional linear method without consideration of the stiffening effects. The application limit of the conventional linear method is clarified according to the frequency error. Furthermore, the accuracy of the assumed mode method is investigated by comparison of the results obtained by using the present finite element method and those obtained by using the assumed mode method.  相似文献   

9.
The natural frequencies and vibration mode shapes of flat plates are simultaneously measured using ESPI. The method involves measuring the surface shape of a vibrating plate at high frame rate using a modified Michelson interferometer and high-speed camera. The vibration is excited here by impact; white (random) noise could alternatively be used. Fourier analysis of the acquired data gives the natural frequencies and associated mode shapes. The analytical procedure used has the advantage that it simultaneously identifies full-field quantitative images of all vibration modes with frequencies up to half the sampling frequency. In comparison, the ESPI time-averaging and the traditional Chladni methods both require that the plate be excited at each natural frequency to allow separate qualitative measurements of the associated mode shapes. The Instrumented Hammer method and Laser Doppler Vibrometry give quantitative measurements but require sequential sampling of individual points on the test surface to provide full-field results. Example ESPI measurements are presented to illustrate the use and capabilities of the proposed plate natural frequency and mode shape measurement method.  相似文献   

10.
The Proper Orthogonal Decomposition (POD) method and the Galerkin projection are applied to study vibrations on an aluminum square plate. Data from the plate vibrations were obtained using a Laser Vibrometer and the Fringe Projection technique. The vibrations, within the range 100 to 5,000 Hz, on the metal plate were produced with an electrodynamical shaker. Due to the symmetrical nature of the plate, the vertical displacement velocity measurements were taken only on a rectangular grid of 7×8 points. The vertical displacement velocity measured at different locations and times, was synchronized with a full-field instantaneous image of the plate obtained from the Fringe Projection technique. The plate vibration measurements were used to calculate its eigenfunctions and the eigenvalues. It was found that a large fraction of the total energy of the vibration is contained within the first two POD modes. The essential features of the vibration are thus described by only the first two eigenfunctions. A reduced order model for the dynamical behavior is then constructed using the Galerkin projection of the equation of motion for the vertical displacement of a plate.  相似文献   

11.
The applicability of the transient cooling experimental technique is studied for developing a correlation for Nusselt number with other pertinent parameters for laminar aiding mixed convection flows over an isothermal vertical plate. A heated aluminum plate, modeled as a lumped system, is allowed to cool in the mixed convection environment during which the transient response of the plate is recorded using a data acquisition system. The experimentally known transient response of the plate is then compared with the numerically computed transient response to estimate the square of the residual. The minimization of this residual using Levenberg–Marquardt iterative procedure retrieves the values of relevant parameters in the correlation, whose form is assumed a priori. The experiments were conducted for a temperature range of 410–305 K and a corresponding Richardson number range 20–0.04. The retrieved values of the parameters compare well with those available in literature.  相似文献   

12.
The evolution of the planar vibrations of a rectangular piezoceramic plate as its aspect ratio is changed starting with 1 is studied. Experimental data are obtained using an integrated technique based on Meson’s circuit, Onoe’s circuit, and a piezotransformer transducer. As the aspect ratio increases (square plate becomes rectangular), the intensity of electromagnetic vibrations rapidly increases at the first longitudinal resonance and gradually decreases in the first radial mode. When the aspect ratio is changed so that the length of one of the plate sides remains constant, the resonant frequencies of all vibration modes change too __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 7, pp. 98–106, July 2007.  相似文献   

13.
In this paper, we study both the static and dynamic instabilities of submerged and inclined concentric pipes conveying fluid. The governing equation for the inner tubular beam is derived under small deformation assumptions. We obtain the discretized dynamical equations using spatial finite-difference schemes. In the case of steady flow, both buckling and flutter instabilities are investigated. In the case of pulsatile flow, we compute the eigenvalues of the monodromy matrix derived from the discretized linear system with periodic coefficients, and deduce the dynamical stability information. In addition, for a special case, in which the concentric pipes have the same length, we compare the dynamic stability results with the corresponding solutions obtained with the Bolotin method.  相似文献   

14.
针对非均匀Winkler弹性地基上变厚度矩形板的自由振动问题,通过一种有效的数值求解方法——微分变换法(DTM),研究其无量纲固有频率特性。已知变厚度矩形板对边为简支边界条件,其他两边的边界条件为简支、固定或自由任意组合。采用DTM将非均匀Winkler弹性地基上变厚度矩形板无量纲化的自由振动控制微分方程及其边界条件变换为等价的代数方程,得到含有无量纲固有频率的特征方程。数值结果退化为均匀Winker弹性地基上矩形板以及变厚度矩形板的情形,并与已有文献采用的不同求解方法进行比较,结果表明,DTM具有非常高的精度和很强的适用性。最后,在不同边界条件下分析地基变化参数、厚度变化参数和长宽比对矩形板无量纲固有频率的影响,并给出了非均匀Winkler弹性地基上对边简支对边固定变厚度矩形板的前六阶振型。  相似文献   

15.
In-plane vibration modes of an aluminum panel were experimentally identified from frequency response tests. Responses were measured on the panel edges and at selected locations on the panel surface. The measurements on the surface were made by attaching accelerometers oriented parallel to the panel plane. Resonance frequencies, relative damping ratios and mode shapes were established for the lowest 12 in-plane modes found in the frequency range between 1600 and 7000 Hz. A damping ratio of less than 0.05 percent of critical damping is proved to be valid for the aluminum panel. A finite element software was used to calculate 12 corresponding theoretical in-plane eigenfrequencies and mode shapes. An outline for a nondestructive procedure is suggested to estimate the input data for the elastic constants of an isotropic plate model. Two of the modes were used in analogy with the flexural vibration of beams and plates. The modes illustrate the deformation pattern including shear deformations, through the thickness, for the bending modes of thick beams or plates. The Rayleigh-Timoshenko theory also was used for the calculation of these two eigenfrequencies.  相似文献   

16.
This paper describes a method for free vibration analysis of rectangular plates with any thicknesses, which range from thin, moderately thick to very thick plates. It utilises admissible functions comprising the Chebyshev polynomials multiplied by a boundary function. The analysis is based on a linear, small-strain, three-dimensional elasticity theory. The proposed technique yields very accurate natural frequencies and mode shapes of rectangular plates with arbitrary boundary conditions. A very simple and general programme has been compiled for the purpose. For a plate with geometric symmetry, the vibration modes can be classified into symmetric and antisymmetric ones in that direction. In such a case, the computational cost can be greatly reduced while maintaining the same level of accuracy. Convergence studies and comparison have been carried out taking square plates with four simply-supported edges as examples. It is shown that the present method enables rapid convergence, stable numerical operation and very high computational accuracy. Parametric investigations on the vibration behaviour of rectangular plates with four clamped edges have also been performed in detail, with respect to different thickness-side ratios, aspect ratios and Poisson’s ratios. These results may serve as benchmark solutions for validating approximate two-dimensional theories and new computational techniques in future.  相似文献   

17.
The active vibration control of a rectangular plate either partially or fully submerged in a fluid was investigated. Piezoelectric sensors and actuators were bonded to the plate, and the assumed mode method was used to derive a dynamic model for the submerged plate. The properties of the piezoelectric actuators and sensors, as well as their coupling to the structure, were used to derive the corresponding equations of their behaviour. The fluid effect was modelled according to the added virtual mass obtained by solving the Laplace equation. The natural vibration characteristics of the plate both in air and in water were obtained theoretically and were found to be consistent with the experimental results, and the changes in the natural frequencies resulting from submersion in fluid can be accurately predicted. A multi-input, multi-output positive position feedback controller was designed by taking the natural vibration characteristics into account and was then implemented by using a digital controller. The experimental results show that piezoelectric sensors and actuators along with the control algorithm can effectively suppress the vibration of a rectangular plate both in air and submerged in a fluid.  相似文献   

18.
An experimental and numerical study of the aeroelastic behaviour of elongated rectangular and square cylinders is presented. The main results are for a rectangular section with an aspect ratio of 2. The experiments were performed with a flexible cylinder clamped at both ends. This configuration leads to unusual lock-in of the vortex shedding with different bending modes, although the final steady oscillations occur in the fundamental mode. The galloping regime is also investigated, and the effect of free-stream turbulence intensity. Critical velocities are detected which do not correspond to calculations using the quasi-steady theory. A simple modelling of galloping is proposed to better fit the experiments, but it is shown that some of the configurations, in turbulent flow, are probably interacting with the vortex shedding and make the modelling inefficient. Numerical simulations on a 2-D rectangular section are presented and the resulting wall pressure distributions are analysed using the proper orthogonal decomposition technique. Indicators are proposed in order to link the proper functions with their contribution to the aerodynamic force components, and then a classification of the proper shapes of the decomposition is done. It is shown by comparison between the static case and forced oscillations, in the galloping range, that secondary vortices inside the shear layer become symmetrical and their effect on the forces is cancelled.  相似文献   

19.
Owing to the advantages of noncontact and fullfield measurement, an optical system called the amplitude fluctuation electronic speckle pattern interferometry (AFESPI) method with an out-of-plane setup is employed to investigate the vibration of a cantilever square plate with a crack emanating from one edge. Based on the fact that clear fringe patterns will be shown by the AFESPI method only at resonant frequencies, both the resonant frequencies and the vibration mode shapes can be obtained experimentally at the same time. Three different crack locations will be discussed in detail in this study. One is parallel to the clamped edge, and the other two are perpendicular to the clamped edge. The numerical finite element calculations are compared with the experimental results, and good agreement is obtained for resonant frequencies and mode shapes. The influences of crack locations and lengths on the vibration behavior of the clamped cantilever plate are studied in terms of the dimensionless frequency parameter (λ 2) versus crack length ratio (a/L). The authors find that if the crack face displacements are out of phase, a large value of stress intensity factor may be induced, and the cracked plate will be dangerous from the fracture mechanics point of view. However, there are some resonant frequencies for which the crack face displacements are completely in phase, causing a zero stress intensity factor, and the cracked plate will be safe.  相似文献   

20.
Y. Kiani 《Meccanica》2017,52(6):1353-1367
Chebyshev polynomial functions are used in the Lagrangian multipliers method to study the free vibration characteristics of rectangular moderately thick composite plates reinforced with carbon nanotubes (CNTs). Plate is resting on point supports. Distribution of CNTs across the plate thickness is considered to be either uniform or functionally graded. Properties of the plate are obtained using a refined rule of mixtures approach which includes the efficiency parameters to capture the size dependent characteristics of the composite plate. Using a Ritz solution method, an eigenvalue problem is established which results in natural frequencies and mode shapes of the plate. Based on the developed solution method, number and position of point supports are arbitrary and also various boundary conditions may be assumed for the four edges of the plate. After performing comparison studies for isotropic homogeneous plates on point supports, parametric studies are provided to explore the vibration characteristics of the carbon nanotube reinforced composite plates on point supports. It is shown that, frequencies of the plate increase as the volume fraction of CNTs increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号