首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we consider the problem of constructing partitions of the points of a Hermitian unital into pairwise disjoint blocks, commonly known as spreads. We generalize a construction of Baker et al. (In Finite Geometry and Combinatorics, Vol. 191 of London Math. Soc. Lecture Not Ser., pages 17–30. Cambridge University Press, Cambridge, 1993.) to provide a new infinite family of spreads. Morover, we develop a structural connection between these new spreads of the Hermitian unital in PG(2, q2) and the subregular spreads of PG(3, q), allowing us to christen a new “subregular” family of spreads in the Hermitian unital in PG(2, q2).  相似文献   

2.
A linear (qd, q, t)‐perfect hash family of size s consists of a vector space V of order qd over a field F of order q and a sequence ?1,…,?s of linear functions from V to F with the following property: for all t subsets X ? V, there exists i ∈ {1,·,s} such that ?i is injective when restricted to F. A linear (qd, q, t)‐perfect hash family of minimal size d( – 1) is said to be optimal. In this paper, we prove that optimal linear (q2, q, 4)‐perfect hash families exist only for q = 11 and for all prime powers q > 13 and we give constructions for these values of q. © 2004 Wiley Periodicals, Inc. J Comb Designs 12: 311–324, 2004  相似文献   

3.
Let ${s,\,\tau\in\mathbb{R}}Let s, t ? \mathbbR{s,\,\tau\in\mathbb{R}} and q ? (0,¥]{q\in(0,\infty]} . We introduce Besov-type spaces [(B)\dot]s, tpq(\mathbbRn){{{{\dot B}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}} for p ? (0, ¥]{p\in(0,\,\infty]} and Triebel–Lizorkin-type spaces [(F)\dot]s, tpq(\mathbbRn) for p ? (0, ¥){{{{\dot F}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}\,{\rm for}\, p\in(0,\,\infty)} , which unify and generalize the Besov spaces, Triebel–Lizorkin spaces and Q spaces. We then establish the j{\varphi} -transform characterization of these new spaces in the sense of Frazier and Jawerth. Using the j{\varphi} -transform characterization of [(B)\dot]s, tpq(\mathbbRn) and [(F)\dot]s, tpq(\mathbbRn){{{{\dot B}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}\, {\rm and}\, {{\dot F}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}} , we obtain their embedding and lifting properties; moreover, for appropriate τ, we also establish the smooth atomic and molecular decomposition characterizations of [(B)\dot]s, tpq(\mathbbRn) and [(F)\dot]s, tpq(\mathbbRn){{{{\dot B}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}\,{\rm and}\, {{\dot F}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}} . For s ? \mathbbR{s\in\mathbb{R}} , p ? (1, ¥), q ? [1, ¥){p\in(1,\,\infty), q\in[1,\,\infty)} and t ? [0, \frac1(max{pq})¢]{\tau\in[0,\,\frac{1}{(\max\{p,\,q\})'}]} , via the Hausdorff capacity, we introduce certain Hardy–Hausdorff spaces B[(H)\dot]s, tpq(\mathbbRn){{{{B\dot{H}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}}} and prove that the dual space of B[(H)\dot]s, tpq(\mathbbRn){{{{B\dot{H}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}}} is just [(B)\dot]-s, tp¢, q(\mathbbRn){\dot{B}^{-s,\,\tau}_{p',\,q'}(\mathbb{R}^{n})} , where t′ denotes the conjugate index of t ? (1,¥){t\in (1,\infty)} .  相似文献   

4.
For the two versions of the KdV equation on the positive half-line an initial-boundary value problem is well posed if one prescribes an initial condition plus either one boundary condition if q t and q xxx have the same sign (KdVI) or two boundary conditions if q t and q xxx have opposite sign (KdVII). Constructing the generalized Dirichlet to Neumann map for the above problems means characterizing the unknown boundary values in terms of the given initial and boundary conditions. For example, if {q(x,0),q(0,t)} and {q(x,0),q(0,t),q x (0,t)} are given for the KdVI and KdVII equations, respectively, then one must construct the unknown boundary values {q x (0,t),q xx (0,t)} and {q xx (0,t)}, respectively. We show that this can be achieved without solving for q(x,t) by analysing a certain “global relation” which couples the given initial and boundary conditions with the unknown boundary values, as well as with the function Φ (t)(t,k), where Φ (t) satisfies the t-part of the associated Lax pair evaluated at x=0. The analysis of the global relation requires the construction of the so-called Gelfand–Levitan–Marchenko triangular representation for Φ (t). In spite of the efforts of several investigators, this problem has remained open. In this paper, we construct the representation for Φ (t) for the first time and then, by employing this representation, we solve explicitly the global relation for the unknown boundary values in terms of the given initial and boundary conditions and the function Φ (t). This yields the unknown boundary values in terms of a nonlinear Volterra integral equation. We also discuss the implications of this result for the analysis of the long t-asymptotics, as well as for the numerical integration of the KdV equation.  相似文献   

5.
Chunwei Song   《Discrete Mathematics》2008,308(22):5218-5229
As a generalization of Haglund's statistic on Dyck paths [Conjectured statistics for the q,t-Catalan numbers, Adv. Math. 175 (2) (2003) 319–334; A positivity result in the theory of Macdonald polynomials, Proc. Nat. Acad. Sci. 98 (2001) 4313–4316], Egge et al. introduced the (q,t)-Schröder polynomial Sn,d(q,t), which evaluates to the Schröder number when q=t=1 [A Schröder generalization of Haglund's statistic on Catalan paths, Electron. J. Combin. 10 (2003) 21pp (Research Paper 16, electronic)]. In their paper, Sn,d(q,t) was conjectured to be equal to the coefficient of a hook shape on the Schur function expansion of the symmetric function en, which Haiman [Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math. 149 (2002) 371–407] has shown to have a representation-theoretic interpretation. This conjecture was recently proved by Haglund [A proof of the q,t-Schröder conjecture, Internat. Math. Res. Not. (11) (2004) 525–560]. However, because that proof makes heavy use of symmetric function identities and plethystic machinery, the combinatorics behind it is not understood. Therefore, it is worthwhile to study it combinatorially. This paper investigates the limiting case of the (q,t)-Schröder Theorem and obtains interesting results by looking at some special cases.  相似文献   

6.
A lot of research has been done on the spectrum of the sizes of maximal partial spreads in PG(3,q) [P. Govaerts and L. Storme, Designs Codes and Cryptography, Vol. 28 (2003) pp. 51–63; O. Heden, Discrete Mathematics, Vol. 120 (1993) pp. 75–91; O. Heden, Discrete Mathematics, Vol. 142 (1995) pp. 97–106; O. Heden, Discrete Mathematics, Vol. 243 (2002) pp. 135–150]. In [A. Gács and T. Sznyi, Designs Codes and Cryptography, Vol. 29 (2003) pp. 123–129], results on the spectrum of the sizes of maximal partial line spreads in PG(N,q), N 5, are given. In PG(2n,q), n 3, the largest possible size for a partial line spread is q2n-1+q2n-3+...+q3+1. The largest size for the maximal partial line spreads constructed in [A. Gács and T. Sznyi, Designs Codes and Cryptography, Vol. 29 (2003) pp. 123–129] is (q2n+1q)/(q2–1)–q3+q2–2q+2. This shows that there is a non-empty interval of values of k for which it is still not known whether there exists a maximal partial line spread of size k in PG(2n,q). We now show that there indeed exists a maximal partial line spread of size k for every value of k in that interval when q 9.J. Eisfeld: Supported by the FWO Research Network WO.011.96NP. Sziklai: The research of this author was partially supported by OTKA D32817, F030737, F043772, FKFP 0063/2001 and Magyary Zoltan grants. The third author is grateful for the hospitality of Ghent University.  相似文献   

7.
Let S1, S2,…,St be pairwise disjoint non‐empty stable sets in a graph H. The graph H* is obtained from H by: (i) replacing each Si by a new vertex qi; (ii) joining each qi and qj, 1 ≤ i # jt, and; (iii) joining qi to all vertices in H – (S1S2 ∪ ··· ∪ St) which were adjacent to some vertex of Si. A cograph is a P4‐free graph. A graph G is called a cograph contraction if there exist a cograph H and pairwise disjoint non‐empty stable sets in H for which G ? H*. Solving a problem proposed by Le [ 2 ], we give a finite forbidden induced subgraph characterization of cograph contractions. © 2004 Wiley Periodicals, Inc. J Graph Theory 46: 217–226, 2004  相似文献   

8.
 We prove that if a symmetric submarkovian semigroup (T t ) t>0 satisfies an estimate of the form
where ϕ is an increasing C 1 -diffeomorphism of [0,+∞) with subexponential growth, then a suitable function of its infinitesimal generator is bounded from L p (M) to L q (M) for 1<p<q<+∞, and that a weak converse holds true if p=2. In the special case where ϕ(t)=Ct μ for small t and ϕ(t)=C′ exp(ct ν ) for large t, μ>0, c>0, 0<ν<1, one obtains a sharp and explicit result, which applies for instance to sublaplacians on solvable unimodular Lie groups with exponential growth. Received: 29 June 2001 / Published online: 1 April 2003 Mathematics Subject Classifications (2000): 47D06, 58J35, 43A80 Research supported by the Italian M.U.R.S.T., fondi 60%, the Italian GNAFA, and the European Commission (European TMR Network ``Harmonic Analysis' 1998–2001, Contract ERBFMRX-CT97-0159).  相似文献   

9.
Let K q (n, w, t, d) be the minimum size of a code over Z q of length n, constant weight w, such that every word with weight t is within Hamming distance d of at least one codeword. In this article, we determine K q (n, 4, 3, 1) for all n ≥ 4, q = 3, 4 or q = 2 m  + 1 with m ≥ 2, leaving the only case (q, n) = (3, 5) in doubt. Our construction method is mainly based on the auxiliary designs, H-frames, which play a crucial role in the recursive constructions of group divisible 3-designs similar to that of candelabra systems in the constructions of 3-wise balanced designs. As an application of this approach, several new infinite classes of nonuniform group divisible 3-designs with block size four are also constructed.  相似文献   

10.
We start with a (q,t)-generalization of a binomial coefficient. It can be viewed as a polynomial in t that depends upon an integer q, with combinatorial interpretations when q is a positive integer, and algebraic interpretations when q is the order of a finite field. These (q,t)-binomial coefficients and their interpretations generalize further in two directions, one relating to column-strict tableaux and Macdonald’s “7 th variation” of Schur functions, the other relating to permutation statistics and Hilbert series from the invariant theory of GLn(\mathbbFq)GL_{n}({\mathbb{F}}_{q}) .  相似文献   

11.
In [G. Lunardon, Semifields and linear sets of PG(1,qt), Quad. Mat., Dept. Math., Seconda Univ. Napoli, Caserta (in press)], G. Lunardon has exhibited a construction method yielding a theoretical family of semifields of order q2n,n>1 and n odd, with left nucleus Fqn, middle and right nuclei both Fq2 and center Fq. When n=3 this method gives an alternative construction of a family of semifields described in [N.L. Johnson, G. Marino, O. Polverino, R. Trombetti, On a generalization of cyclic semifields, J. Algebraic Combin. 26 (2009), 1-34], which generalizes the family of cyclic semifields obtained by Jha and Johnson in [V. Jha, N.L. Johnson, Translation planes of large dimension admitting non-solvable groups, J. Geom. 45 (1992), 87-104]. For n>3, no example of a semifield belonging to this family is known.In this paper we first prove that, when n>3, any semifield belonging to the family introduced in the second work cited above is not isotopic to any semifield of the family constructed in the former. Then we construct, with the aid of a computer, a semifield of order 210 belonging to the family introduced by Lunardon, which turns out to be non-isotopic to any other known semifield.  相似文献   

12.
Statistical properties of continued fractions for numbers a/b, where a and b lie in the sector a, b ≥ 1, a2 + b2 ≤ R2, are studied. The main result is an asymptotic formula with two meaning terms for the quantity
where sx(a/b) = |{j ε {1, …, s}: [0; tj, …, ts] ≤ x}| is the Gaussian statistic for the fraction a/b = [t0; t1, …, ts]. Bibliography: 12 titles. __________ Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 322, 2005, pp. 186–211.  相似文献   

13.
Let N be the set of nonnegative integers, let , t, v be in N and let K be a subset of N, let V be a v-dimensional vector space over the finite field GF(q), and let W Kbe the set of subspaces of V whose dimensions belong to K. A t-[v, K, ; q]-design on V is a mapping : W K N such that for every t-dimensional subspace, T, of V, we have (B)=. We construct t-[v, {t, t+1}, ; q-designs on the vector space GF(q v) over GF(q) for t2, v odd, and q t(q–1)2 equal to the number of nondegenerate quadratic forms in t+1 variables over GF(q). Moreover, the vast majority of blocks of these designs have dimension t+1. We also construct nontrivial 2-[v, k, ; q]-designs for v odd and 3kv–3 and 3-[v, 4, q 6+q 5+q 4; q]-designs for v even. The distribution of subspaces in the designs is determined by the distribution of the pairs (Q, a) where Q is a nondegenerate quadratic form in k variables with coefficients in GF(q) and a is a vector with elements in GF(q v) such that Q(a)=0.This research was partly supported by NSA grant #MDA 904-88-H-2034.  相似文献   

14.
Some oscillation criteria are established by the averaging technique for the second order neutral delay differential equation of Emden-Fowler type (a(t)x¢(t))¢+q1(t)| y(t-s1)|a sgn y(t-s1) +q2(t)| y(t-s2)|b sgn y(t-s2)=0,    t 3 t0,(a(t)x'(t))'+q_1(t)| y(t-\sigma_1)|^{\alpha}\,{\rm sgn}\,y(t-\sigma_1) +q_2(t)| y(t-\sigma_2)|^{\beta}\,{\rm sgn}\,y(t-\sigma_2)=0,\quad t \ge t_0, where x(t) = y(t) + p(t)y(t − τ), τ, σ1 and σ2 are nonnegative constants, α > 0, β > 0, and a, p, q 1, q2 ? C([t0, ¥), \Bbb R)q_2\in C([t_0, \infty), {\Bbb R}) . The results of this paper extend and improve some known results. In particular, two interesting examples that point out the importance of our theorems are also included.  相似文献   

15.
An algebra with the identity t 1(t 2 t 3) = (t 1 t 2+t 2 t 1)t 3 is called Zinbiel. For example, ℂ[x] under the multiplication is Zinbiel. Let a q b = ab + q ba be a q-commutator, where q ∈ ℂ. We prove that for any Zinbiel algebra A the corresponding algebra under the commutator A (−1) = (A, ○−1) satisfies the identities t 1 t 2 = −t 2 t 1 and (t 1 t 2)(t 3 t 4) + (t 1 t 4)(t 3 t 2) = jac(t 1, t 2, t 3)t 4 + jac(t 1, t 4, t 3)t 2, where jac(t 1, t 2, t 3) = (t 1 t 2)t 3 + (t 2 t 3)t 1 + (t 3 t 1)t 2. We find basic identities for q-Zinbiel algebras and prove that they form varieties equivalent to the variety of Zinbiel algebras if q 2 ≠ 1. __________ Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 11, No. 3, pp. 57–78, 2005.  相似文献   

16.
In this paper we give a new series of Hadamard matrices of order 2 t . When the order is 16, Hadamard matrices obtained here belong to class II, class V or to class IV of Hall's classification [3]. By combining our matrices with the matrices belonging to class I, class II or class III obtained before, we can say that we have direct construction, namely without resorting to block designs, for all classes of Hadamard matrices of order 16.Furthermore we show that the maximal excess of Hadamard matrices of order 22t is 23t , which was proved by J. Hammer, R. Levingston and J. Seberry [4]. We believe that our matrices are inequivalent to the matrices used by the above authors. More generally, if there is an Hadamard matrix of order 4n 2 with the maximal excess 8n 3, then there exist more than one inequivalent Hadamard matrices of order 22t n 2 with the maximal excess 23t n 3 for anyt 2.  相似文献   

17.
In the present paper, we advance considerably the current knowledge on the topic of bifurcations of heteroclinic cycles for smooth, meaning C , parametrized families {g t t∈ℝ} of surface diffeomorphisms. We assume that a quadratic tangency q is formed at t=0 between the stable and unstable lines of two periodic points, not belonging to the same orbit, of a (uniformly hyperbolic) horseshoe K (see an example at the Introduction) and that such lines cross each other with positive relative speed as the parameter evolves, starting at t=0 and the point q. We also assume that, in some neighborhood W of K and of the orbit of tangency o(q), the maximal invariant set for g 0=g t=0 is Ko(q), where o(q) denotes the orbit of q for g 0. We then prove that, when the Hausdorff dimension HD(K) is bigger than one, but not much bigger (see (H.4) in Section 1.2 for a precise statement), then for most t, |t| small, g t is a non-uniformly hyperbolic horseshoe in W, and so g t has no attractors in W. Most t, and thus most g t , here means that t is taken in a set of parameter values with Lebesgue density one at t=0.  相似文献   

18.
We present a new recursive construction for difference matrices whose application allows us to improve some results by D. Jungnickel. For instance, we prove that for any Abelian p-group G of type (n1, n2, …, nt) there exists a (G, pe, 1) difference matrix with e = Also, we prove that for any group G there exists a (G, p, 1) difference matrix where p is the smallest prime dividing |G|. Difference matrices are then used for constructing, recursively, relative difference families. We revisit some constructions by M. J. Colbourn, C. J. Colbourn, D. Jungnickel, K. T. Phelps, and R. M. Wilson. Combining them we get, in particular, the existence of a multiplier (G, k, λ)-DF for any Abelian group G of nonsquare-free order, whenever there exists a (p, k, λ)-DF for each prime p dividing |G|. Then we focus our attention on a recent construction by M. Jimbo. We improve this construction and prove, as a corollary, the existence of a (G, k, λ)-DF for any group G under the same conditions as above. © 1998 John Wiley & Sons, Inc. J Combin Designs 6: 165–182, 1998  相似文献   

19.
The genus g of an q-maximal curve satisfies g=g 1q(q−1)/2 or . Previously, q-maximal curves with g=g 1 or g=g 2, q odd, have been characterized up to q-isomorphism. Here it is shown that an q-maximal curve with genus g 2, q even, is q-isomorphic to the non-singular model of the plane curve ∑ i =1} t y q /2 i =x q +1, q=2 t , provided that q/2 is a Weierstrass non-gap at some point of the curve. Received: 3 December 1998  相似文献   

20.
We present here a proof that a certain rational function Cn(q,t) which has come to be known as the “q,t-Catalan” is in fact a polynomial with positive integer coefficients. This has been an open problem since 1994. The precise form of the conjecture is given in Garsia and Haiman (J. Algebraic Combin. 5(3) (1996) 191), where it is further conjectured that Cn(q,t) is the Hilbert series of the diagonal harmonic alternants in the variables (x1,x2,…,xn;y1,y2,…,yn). Since Cn(q,t) evaluates to the Catalan number at t=q=1, it has also been an open problem to find a pair of statistics a(π),b(π) on Dyck paths π in the n×n square yielding Cn(q,t)=∑πta(π)qb(π). Our proof is based on a recursion for Cn(q,t) suggested by a pair of statistics a(π),b(π) recently proposed by Haglund. Thus, one of the byproducts of our developments is a proof of the validity of Haglund's conjecture. It should also be noted that our arguments rely and expand on the plethystic machinery developed in Bergeron et al. (Methods and Applications of Analysis, Vol. VII(3), 1999, p. 363).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号