首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solutions of two-dimensional gravityfollowing from a non-linear Lagrangian =f(R)g are classified, and their symmetry andsingularity properties are described. Then a conformaltransformation is applied to rewrite these solutions as analogoussolutions of two-dimensional Einstein-dilaton gravityand vice versa.  相似文献   

2.
Within a fourth-order theory of gravity we give,for a static asymptotically flat spacetime, anexpression of the active mass (gravitational mass), infirst order in the coupling constant, , of the curvature squared term in the Lagrangiandensity, a generalization of the Tolman expression forthe energy, which establishes a relationship between theactive mass and the source structure in a static spacetime. Within this approximation, we canprove that the fourth-order theory shares with Generalrelativity (GR) the property that, for sources ofcompact support, the active mass is independent of any two-dimensional surface which encloses thesupport of the matter distribution. Finally, we provethat only for conformally invariant sources thefourth-order theory and GR share the same static andasymptotically flat solutions.  相似文献   

3.
Multi-dimensional spherically symmetric spacetimes are of interest in the study of higher-dimensional black holes (and solitons) and higher-dimensional cosmological models. In this paper we shall present a comprehensive investigation of solutions of the five-dimensional spherically symmetric vacuum Einstein field equations subject only to the condition of separability in the radial coordinate (but not necessarily in the remaining two coordinates). A variety of new solutions are found which generalize a number of previous results. The properties of these solutions are discussed with particular attention being paid to their possible astrophysical and cosmological applications. In addition, the four-dimensional properties of matter can be regarded as geometrical in origin by a reduction of the five-dimensional vacuum field equations to Einstein's four-dimensional theory with a non-zero energy-momentum tensor constituting the material source; we shall also be interested in the induced matter associated with the new five-dimensional solutions obtained.  相似文献   

4.
This paper is devoted to find the Locally Rotationally Symmetric (LRS) vacuum solutions in the context of f(R) theory of gravity. Actually, we have considered the three metrics representing the whole family of LRS spacetimes and solved the field equations by using metric approach as well as the assumption of constant scalar curvature. It is mention here that R may be zero or non-zero. In all we found 10 different solutions.  相似文献   

5.
We continue recent work (Mallios and Raptis, International Journal of Theoretical Physics 40, 1885, 2001; in press) and formulate the gravitational vacuum Einstein equations over a locally finite space-time by using the basic axiomatics, techniques, ideas, and working philosophy of Abstract Differential Geometry. The main kinematical structure involved, originally introduced and explored in (Mallios and Raptis, International Journal of Theoretical Physics 40, 1885, 2001), is a curved principal finitary space-time sheaf of incidence algebras, which have been interpreted as quantum causal sets, together with a nontrivial locally finite spin-Loretzian connection on it which lays the structural foundation for the formulation of a covariant dynamics of quantum causality in terms of sheaf morphisms. Our scheme is innately algebraic and it supports a categorical version of the principle of general covariance that is manifestly independent of a background -smooth space-time manifold M. Thus, we entertain the possibility of developing a fully covariant path integral-type of quantum dynamical scenario for these connections that avoids ab initio various problems that such a dynamics encounters in other current quantization schemes for gravity—either canonical (Hamiltonian) or covariant (Lagrangian)—involving an external, base differential space-time manifold, namely, the choice of a diffeomorphism-invariant measure on the moduli space of gauge-equivalent (self-dual) gravitational spin-Lorentzian connections and the (Hilbert space) inner product that could in principle be constructed relative to that measure in the quantum theory—the so-called inner product problem, as well as the problem of time that also involves the Diff(M) structure group of the classical -smooth space-time continuum of general relativity. Hence, by using the inherently algebraico—sheaf—theoretic and calculus-free ideas of Abstract Differential Geometry, we are able to draw preliminary, albeit suggestive, connections between certain nonperturbative (canonical or covariant) approaches to quantum general relativity (e.g., Ashtekar's new variables and the loop formalism that has been developed along with them) and Sorkin et al.'s causal set program. As it were, we noncommutatively algebraize, differential geometrize and, as a result, dynamically vary causal sets. At the end, we anticipate various consequences that such a scenario for a locally finite, causal and quantal vacuum Einstein gravity might have for the obstinate (from the viewpoint of the smooth continuum) problem of -smooth space-time singularities.  相似文献   

6.
A massive Yang-Mills field theory with the conformal (Weyl) invariance[1] and gauge invariance is proposed. It involves the gravitational and various gauge interactions, in which all the mass terms appear as the uniform interactional form m(x) = KΦ(x). When the conformal and gauge symmetries are broken spontaneously, the Einstein gravitation emerges and all the fields obtain masses, this theory is renormalizable and unitary with the gravitation ignored. Finally we give a relation between the theory and the Higgs mechanism.  相似文献   

7.
In a class of generalized gravity theories with general couplings between the scalar field and the scalar curvature in the Lagrangian, we can describe the quantum generation and the classical evolution of both the scalar and tensor structures in a simple and unified manner. An accelerated expansion phase based on the generalized gravity in the early universe drives microscopic quantum fluctuations inside a causal domain to expand into macroscopic ripples in the spacetime metric on scales larger than the local horizon. Following their generation from quantum fluctuations, the ripples in the metric spend a long period outside the causal domain. During this phase their evolution is characterized by their conserved amplitudes. The evolution of these fluctuations may lead to the observed large scale structures of the universe and anisotropies in the cosmic microwave background radiation.  相似文献   

8.
It is well-known that any scalar can be promoted to a Jordan-Brans-Dicke type scalar coupling to the Einstein-Hilbert term through a field dependent Weyl transformation of the metric. The Weyl rescaling also transforms mass terms into coupling constants between matter and the scalar. It is pointed out that there exists a distinguished metric where all scalars decouple from an arbitrary fiducial fermion, e.g. the nucleon. If bound states of this fermion are used to define distances and to probe the interior of the forward light cone, it seems reasonable to say that the metric in that particular frame defines the local geometry of space-time at low energies, as probed by experimental gravity and cosmology.  相似文献   

9.
The pentalogy (Mallios, A. and Raptis, I. (2001). International Journal of Theoretical Physics 40, 1885; Mallios, A. and Raptis, I. (2002). International Journal of Theoretical Physics 41, 1857; Mallios, A. and Raptis, I. (2003).International Journal of Theoretical Physics 42, 1479; Mallios, A. and Raptis, I. (2004). ‘paper-book’/research monograph); I. Raptis (2005). International Journal of Theoretical Physics (to appear)is brought to its categorical climax by organizing the curved finitary spacetime sheaves of quantumcausal sets involved therein, on which a finitary (:locally finite), singularity-free, background manifold independent and geometrically prequantized version of the gravitational vacuum Einstein field equations were seen to hold, into a topos structure . We show that the category of finitary differential triads is a finitary instance of an elementary topos proper in the original sense dueto Lawvere and Tierney. We present in the light of Abstract Differential Geometry (ADG) a Grothendieck-type of generalization of Sorkin’s finitary substitutes of continuous spacetime manifoldtopologies, the latter’s topological refinement inverse systems of locally finite coverings and their associated coarse graining sieves, the upshot being that is also a finitary example of a Grothendieck topos. In the process, we discover that the subobject classifier Ω fcq of is a Heyting algebra type of object, thus we infer that the internal logic of our finitary topos is intuitionistic, as expected. We also introduce the new notion of ‘finitary differential geometric morphism’ which, as befits ADG, gives a differential geometric slant to Sorkin’s purely topological acts of refinement (:coarse graining). Based on finitary differential geometric morphisms regarded as natural transformations of the relevant sheaf categories, we observe that the functorial ADG-theoretic version of the principle of general covariance of GeneralRelativity is preserved under topological refinement. The paper closes with a thorough discussion of four future routes we could take in order to further develop our topos-theoretic perspective on ADG-gravity along certain categorical trends in current quantum gravity research. PACS numbers: 04.60.-m, 04.20.Gz, 04.20.-q Posted at the General Relativity and Quantum Cosmology (gr-qc) electronic archive (www.arXiv.org), as: gr-qc/0507100.  相似文献   

10.
We consider a class of fourth order theories of gravity with arbitrary matter fields arising from a diffeomorphism invariant Lagrangian density , with and the phenomenological representation of the nongravitational fields. We derive first the generalization of the Einstein pseudotensor and the von Freud superpotential. We then show, using the arbitrariness that is always present in the choice of pseudotensor and superpotential, that we can choose these superpotentials to have the same form as those for the Hilbert Lagrangian of general relativity (GR). In particular we may introduce the Moller superpotential of GR as associated with a double-index differential conservation law. Similarly, using the Moller superpotential we prove that we can choose the Komar vector of GR to construct a conserved quantity for isolated asymptotically flat systems. For the example R + R2theory we prove then, that the active mass is equal to the total energy (or inertial mass) of the system.  相似文献   

11.
The Hamilton formalism of cosmological models in fourth-order theories of gravity is considered. An approach to constructing the Hamilton function is presented which starts by replacing the second order derivatives of configuration space coordinates by functions depending on these coordinates, its first order derivatives, and additional variables playing the role of configuration space coordinates. This formalism, which does not resort to the Ostrogradski or Dirac formalism, is elucidated and applied to examples. For a special class of Lagrange functions, it is demonstrated that the canonical coordinates of the considered formalism and of the Ostrogradski formalism are related via a canonical transformation. The canonical transformation is a transformation of the configuration space coordinates and a transformation of momentum components induced by the transformation of the configuration space coordinates for a special element of the class of Lagrange functions mentioned. The Wheeler-DeWitt equations belonging to this Lagrange function are related via minisuperspace coordinate transformations.  相似文献   

12.
Based on the observation that the moduli of a link variable on a cyclic group modify Connes‘ distance on this group,we construct several action functionals for this link variable within the framework of noncommutative geometry.After solving the equations of motion,we find that one type of action gives nontrivial vacuum solution for gravity on this cyclic group in a broad range of coupling constants and that such a solution can be expressed with Chebyshev‘s polynomials.  相似文献   

13.
Recently Kaniel and Itin proposed a gravitational model with the wave type equation as vacuum field equation, where denotes the coframe of spacetime. They found that the viable Yilmaz-Rosen metric is an exact solution of the tracefree part of their field equation. This model belongs to the teleparallelism class of gravitational gauge theories. Of decisive importance for the evaluation of the Kaniel-Itin model is the question whether the variation of the coframe commutes with the Hodge star. We find a master formula for this commutator and rectify some corresponding mistakes in the literature. Then we turn to a detailed discussion of the Kaniel-Itin model.  相似文献   

14.
In a nongeometrical interpretation of gravity,the metric g(x) = + (x)is interpreted as an effective metric, whereas(x) is interpreted as afundamental gravitational field, propagated in spacetime which isactually flat. Some advantages and disadvantages of suchan interpretation are discussed. The main advantage isa natural resolution of the flatness problem.  相似文献   

15.
Symmetries of generalized gravitational actions, yielding field equations which typically involve at most second-order derivatives of the metric, are considered. The field equations for several different higher-derivative theories in the first-order formalism are derived, and variations of a generic set of higher-order curvature terms appearing in string effective actions are studied. It is shown that there often exists a particular set of solutions to the field equations of pure gravity theories, consisting of different combinations of curvature tensors, which satisfies the vacuum equations with cosmological constant. Implications of generalized symmetries of the field equations derived from the superstring effective action for the cosmological constant problem are discussed.  相似文献   

16.
Motivated by the well-known charged BTZ black holes, we look for (2 + 1)-dimensional solutions of F(R) gravity. At first we investigate some near horizon solutions and after that we obtain asymptotically Lifshitz black hole solutions. Finally, we discuss about rotating black holes with exponential form of F(R) theory.  相似文献   

17.
We extend previous analyses of soliton solutionsin (4 + 1) gravity to new ranges of their definingparameters. The geometry, as studied using invariants,has the topology of wormholes found in (3 + 1) gravity. In the induced-matter picture, thefluid does not satisfy the strong energy conditions, butits gravitational mass is positive. We infer thepossible existence of (4 + 1) which, compared to their (3 + 1) counterparts, are lessexotic.  相似文献   

18.
We present analytic expressions for the gravitational potentials associated with triaxial ellipsoids, spheroids, spheres and disks in Weyl gravity. The gravitational potentials of these configurations in Newtonian gravity, i.e. the potentials derived by integration of the Poisson equation Green's function 1/|rr| over the volume of the configuration, are well known in the literature. Herein we present the results of the integration of |rr|, the Green's function associated with the fourth order Laplacian 4 of Weyl gravity, over the volume of the configuration to obtain the resulting gravitational potentials within this specific theory. As an application of our calculations, we solve analytically Euler's equations pertaining to incompressible rotating fluids to show that, as in the case of Newtonian gravity, homogeneous prolate configurations are not allowed within Weyl gravity either.  相似文献   

19.
On the basis of the Woodhouse causal axiomatics, we show that conformal proper times and an extra variable in addition to those of space and time, together give a physical justification for the ‘chronometric hypothesis’ of general relativity. Indeed, we show that, with a lack of these latter two ingredients and of this hypothesis, clock paradoxes exist for which the unparadoxical asymmetry cannot be recovered when using the ‘clock and message functions’ only. These proper times originate from a given conformal structure of the spacetime when ascribing different compatible projective structures to each Woodhouse particle, and then, each defines a specific Weylian ‘sheaf structure’. In addition, the proper time parameterizations are defined via path-dependent conformal scale factors, which act like sockets for any kind of physical interaction and also represent the values of the variable associated with the extra dimension.  相似文献   

20.
This paper is devoted to investigate non-vacuum solutions of cylindrically symmetric spacetime in the context of metric f(R) gravity. We take dust matter to find energy density of the universe. In particular, we find two exact solutions, which correspond to two f(R) models in each case. The first solution provides constant curvature while the second solution corresponds to non-constant curvature. The functions of the Ricci scalar and energy densities are evaluated in each case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号