首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal binding affinity and selectivity of peptides are reviewed with a special emphasis on the high structural variety of peptide complexes. The most common structural type of these complexes is built up by the deprotonation and metal ion coordination of subsequent amide groups in the form of fused five-membered chelate rings. The metal ion selectivity of this process and the role of various anchoring groups are discussed in detail. The highest metal binding affinity of peptides is connected to the presence of two anchoring groups in appropriate location (the "double anchor"): e.g. the NH2-Xaa-Xaa-His/Cys/Asp/Met-Xaa sequence. Among the side chain donor functions, the imidazole of histidyl and thiolate of cysteinyl residues are the most effective ligating groups and their involvement in metal binding results in a great variety of different macrochelate or loop structures and/or formation of various polynuclear complexes. Examples of these structural motifs and their possible applications have been thoroughly discussed.  相似文献   

2.
The influence of metal ions on the conformation of dimethyl phosphate anion around its O-P bonds, has been studied theoretically. The perturbation caused due to metal ions like Na+ and Mg2+ seems to affect the free dimethyl phosphate anion conformation to a considerable extent. In particular, the fully extended conformation becomes much more favourable in the metal ion dimethyl phosphate complex.  相似文献   

3.
4.
Schmitt DH  Fritz JS 《Talanta》1968,15(6):515-524
Cellulose phosphate is used as a chelating ion-exchanger to effect the separation of several metal ions. Its exchange rate is much more rapid than that of a chelating ion-exchanger containing phosphonic acid groups on a polystyrene matrix. Weight distribution coefficients as a function of hydrogen ion concentration on cellulose phosphate are given for several metal ions. Successful separations of rare earths and alkaline earths, alkaline earths and alkali metals and aluminium and alkaline earths have been achieved on cellulose phosphate columns.  相似文献   

5.
Metal ion induced FRET OFF-ON in tren/dansyl-appended rhodamine   总被引:1,自引:0,他引:1  
Lee MH  Kim HJ  Yoon S  Park N  Kim JS 《Organic letters》2008,10(2):213-216
A series of new fluorescent probes bearing tren-spaced rhodamine B and dansyl groups have been synthesized. Compound 1 exhibits selective changes in the absorption and the emission spectra toward Cu2+ ion over miscellaneous metal cations. Among 1-3, 1 shows the best FRET efficiency through dansyl emission to rhodamine absorption for the Cu2+ ion.  相似文献   

6.
The 1H NMR spectra of carp parvalbumin saturated with Ca2+, Cd2+, La3+ and Lu3+ were compared, using 2D 1H NMR techniques as well as conventional 1H NMR spectra. The Ca2+ and Cd2+ saturated parvalbumin (with both high affinity Ca2+-binding sites occupied) gave rise to very similar spectra. This shows that these two species have almost identical protein conformations. The 1H NMR spectrum from the Ln3+ saturated parvalbumins deviated from the other two and it was therefore concluded that Cd2+ is a better probe for Ca2+ than Ln3+ in parvalbumin and probably also for related calcium binding proteins. The addition of excess of divalent metal ions, such as Mg2+ or Ca2+, causes small changes in the chemical shift of some methyl resonances. This is presumably caused by binding of these metal ions to a third site close to the CD site which is made up of the carboxylic groups from Glu 60 and Asp 61.  相似文献   

7.
Nonenzymatic pyridoxal phosphate (PLP) catalyzed decarboxylations and transaminations have been revisited experimentally. Metal ions are known to catalyze a variety of PLP-dependent reactions in solution, including transamination. It is demonstrated here that the rate accelerations previously observed are due solely to enhancement of Schiff base formation under subsaturating conditions. A variety of metal ions were tested for their effects on the reactivity of the 2-methyl-2-aminomalonate Schiff bases. All were found to have either no effect or a small inhibitory one. The effects of Al(3+) were studied in detail with the Schiff bases of 2-methyl-2-aminomalonate, 2-aminoisobutyrate, alanine, and ethylamine. The decarboxylation of 2-methyl-2-aminomalonate is unaffected by metalation with Al(3+), while the decarboxylation of 2-aminoisobutyrate is inhibited 125-fold. The transamination reaction of ethylamine is 75-fold slower than that of alanine. Ethylamine transamination is inhibited 4-fold by Al(3+) metalation, while alanine transamination is inhibited only 1.3-fold. Metal ion inhibition of Schiff base reactivity suggests a simple explanation for the lack of known PLP dependent enzymes that make direct mechanistic use of metal ions. A comparison of enzyme catalyzed, PLP catalyzed, and uncatalyzed reactions shows that PLP dependent decarboxylases are among the best known biological rate enhancers: decarboxylation occurs 10(18)-fold faster on the enzyme surface than it does free in solution. PLP itself provides the lion's share of the catalytic efficiency of the holoenzyme: at pH 8, free PLP catalyzes 2-aminoisobutyrate decarboxylation by approximately 10(10)-fold, with the enzyme contributing an additional approximately 10(8)-fold.  相似文献   

8.
Methods for separation of ions by ion-exchange, ion-pair, and zwitterion ion chromatography share at least one common thread--the induced formation of a cation-anion pair in the stationary phase. Selectivity can be defined as the relative ability of sample ions to form such a pair. Examples are given in anion-exchange chromatography to show the effect of variations in the geometry, bulkiness and polarity of the resin cation on selectivity. The type of resin matrix, the hydrophobic nature of the resin surface and the degree of solvation also affect chromatographic behavior. The selectivity series observed in ion chromatography seems to be best explained by the interplay of two components: electrostatic attraction (ES) and the enforced-pairing (EP) that is brought about by hydrophobic attraction and by water-enforced ion pairing. Selectivity in ion-pair chromatography (IPC) and in zwitterion ion chromatography (ZIC) is affected by both the mobile phase cation and anion. This leads to elution orders for anions that are different from conventional ion-exchange chromatography (IC) of anions where cations are excluded from the stationary phase and have little effect on a separation. The elution order of anions in ZIC is similar to that in IC except for small anions of 2-charge, which are retained more weakly in ZIC. A unique advantage of ZIC is that sample ions can be eluted as ion pairs with pure water as the eluent and a conductivity detector. The mechanism for separation of anions on a zwitterionic stationary phase has been a subject for considerable debate. The available facts point strongly to a partitioning mechanism or a mixed mechanism in which partitioning is dominant with a weaker ion-exchange component.  相似文献   

9.
10.
A novel tetrahomodioxacalix[4]arene (7) bearing both naphthyl- and pyrenyl-amide pendants was synthesized as FRET-based fluorometric sensor for Cu2+ ion. Intramolecular FRET from the naphthalene emission to the pyrene absorption affords Cu2+ ion selectivity over other metal ions. Upon addition of Cu2+ ion, the complex solution of 7 gave a significantly decreased pyrene acceptor emission along with an enhancement of naphthalene donor emission via FRET On-Off event.  相似文献   

11.
An artificial phosphodiesterase (1) bearing two kinds of metal binding sites, a catalytic site and a regulatory bipyridine site showed a unique allosteric transition in the catalytic activity against the metal concentration.  相似文献   

12.
The synthesis of a heteroditopic receptor which exhibits positive cooperativity for the binding of phosphate ion pairs under physiological conditions. Optimised complementarity between crown ether host and metal guest leads to increased binding affinity, Ka.  相似文献   

13.
An artificial phosphodiesterase () bearing two types of metal binding sites, a catalytic site and a regulatory bipyridine site showed a unique allosteric transition in the catalytic activity against the metal concentration. The rate constants for the hydrolysis reaction of 2-hydroxypropyl-p-nitrophenyl phosphate (HPNP) and RNA dimer (ApA) with and without an effector metal ion were evaluated; the k(obs) value of HPNP hydrolysis for .(Zn(2+))(3) (2.0 x 10(-4) s(-1)) is 3.3 times larger than that for .(Zn(2+))(2). In the case of and Cu(2+), a 19.4 times larger k(obs) value was obtained for .(Cu(2+))(3) (1.2 x 10(-3) s(-1)) against .(Cu(2+))(2). The increase in the catalytic activity is ascribed to the allosteric conformational transition of induced by the coordination of effector metal ion to the Bpy moiety. A detailed investigation revealed that a conformational change of induced by the third M(2+) complexation enhances the rate of hydrolysis rather than a change in the substrate affinity.  相似文献   

14.
Chemical systems, in particular those involving biological and environmental backgrounds, develop through selective processes which are determined by multiple equilibria. Several methods that have been developed to assess thermodynamic selectivity in binding equilibria, including the analysis of selectivity coefficients, the use of calculated species distribution diagrams, selectivity diagrams, and conditional stability constants, are reviewed in this paper with reference to examples mainly related to chemical systems of biological and/or environmental concern. Also the concept of binding affinity has been dealt with, since binding selectivity in equilibrium systems relates to the different affinities with which chemical species bind to each other.  相似文献   

15.
The metal ion binding properties of three photoactive poly-(arylene ethynylene) co-polymers with potentially complexing units have been described. Upon protonation or complexation, the intensity of the luminescence typical of these conjugated polymers is completely quenched, due to the extended electronic conjugation of the polymer backbones. In the case of the formation of complexes with Yb3+ and Er3+, one of the studied polymers gives rise to an efficient sensitization of their typical metal centred NIR emission. This feature is of particular interest for the preparation of new materials that are the subject of active research for their possible applications in optical imaging and in optical amplification for telecommunication purposes.  相似文献   

16.
Deep UV resonance Raman spectroscopy was used for characterizing ligand-metal ion complexes. The obtained results demonstrated a strong intrinsic sensitivity and selectivity of a Raman spectroscopic signature of a bicyclic diamide, a novel chelating agent for lanthanides and actinides (Lumetta, G. J.; Rapko, B. M.; Garza, P. A.; Hay, B. P.; Gilbertson, R. D.; Weakley, T. J. R.; Hutchison, J. E. J. Am. Chem. Soc. 2002, 124, 5644). Molecular modeling, which included structure optimization and calculation of Raman frequencies and resonance intensities, allowed for assigning all strong Raman bands of the bicyclic diamide as well as predicting the band shifts observed because of complex formation with metal ions. A comparative analysis of Raman spectra and the results of the molecular modeling could be used for elucidating the structure of complexes in solution.  相似文献   

17.
《Mendeleev Communications》2023,33(3):365-367
To improve the selectivity of cation-exchange membranes to the transfer of lithium with respect to magnesium during the electrodialysis desalination of lithium and magnesium sulfates solutions, the surface of a commercial cation-exchange membrane based on sulfated polystyrene was modified with cerium(III, IV) and zirconium phosphates. Upon incorporation of phosphate particles, the Li/Mg selectivity coefficients of the membranes increased up to 113%.  相似文献   

18.
The metal coordination patterns of hypoxanthine, xanthine and related oxy-purines have been reviewed on the basis of the structural information available in the Cambridge Structural Database (CSD), including also the most recent reports founded in SciFinder. Attention is paid to the metal ion binding modes and interligand interactions in mixed-ligand metal complexes, as well as the possibilities of metal binding of the exocyclic-O atoms. The information in CSD is also reviewed for the complexes of adenine in cationic, neutral and anionic forms with every metal ion. In contrast to the scarce structural information about hypoxanthine and related complexes, large structural information is available for adenine complexes with a variety of metals that reveals some correlations between the crystal–chemical properties of metal ions. Three aspects are studied in deep: the coordination patterns, the interligand interactions influencing the molecular recognition in mixed-ligand metal complexes and the connectivity between metals for different adenine species, thus supporting its unique versatility as ligand. When possible, the overall behaviour showed by adenine metal complexes is discussed according to the HSAB Pearson criteria and the tautomeric behaviour observed for each protonated species of adenine. The differences between the roles of adenine and the referred oxypurines ligands are underlined.  相似文献   

19.
Metal ion function in carbonic anhydrase   总被引:1,自引:0,他引:1  
The purpose of this review is to present an up-to-date account of the chemistry of the metal ion in the enzyme carbonic anhydrase. The interest lies in how the study of the metal may lead to deductions concerning the chemistry of the enzyme's action and in the way that metalloenzyme chemistry seems to demand a new appraisal of some aspects of the established chemistry of metal complexes.  相似文献   

20.
This paper presents a discussion of four areas in which the interaction between organic polymers and metal species is of importance. The first section discusses the effect of metal ions in random ionomers in bulk, where the presence of ions strongly influence the mechanical properties. The next topic covers the influence of metal ions on aqueous solutions of block copolymers, and describes the morphogenic effects seen in such systems. The third section deals with the use of metal ions in non-aqueous solutions of block copolymers leading to the formation of microreactors with a high degree of size control. Finally, the attachment of organometallic species to the corona of block copolymer micelles in non-aqueous solution is discussed in terms of the effect of the metal on the micelle dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号