首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic pollutant removal is the main field of water photocatalytic decontamination. Molecules such as pesticides (herbicides, insecticides, fungicides, etc.) or dyes are totally destroyed and mineralized into CO2 and innocuous inorganic anions (Cl?, SO 4 2? , NO 3 ? ). Presently, two azo-dyes (i.e., containing the-N=N-azo group), Cibacron Brilliant Red 3B-A and Remazol Black B (Reactive Black 5), were successfully destroyed and totally mineralized. The stoichiometric coefficients of the total degradation, as well as the mass balances have been established with different analytical tools: TOC for carbon, DCO for oxygen, ionic-HPLC for heteroatoms (N, S, P) and pH-metry for hydrogen. Moreover, nitrogen balance has been established during the photocatalytic degradation of the dyes by considering not only nitrate and ammonium ions in the solution, but also the formation of N2 in the gas phase. The quantification of N2 molecules suggests that the photocatalytic degradation of azo-compounds is 100% selective in generating gaseous dinitrogen. The reaction mechanism was first determined in a laboratory photoreactor, before degradation in larger pilot solar photoreactors, using UV-A radiant flux from the sun in a new sub-discipline called heliophotocatalysis.  相似文献   

2.
《Comptes Rendus Chimie》2016,19(4):511-516
Algerian's municipal sewage treatment plants generate around 106 m3 of sewage sludge annually. Recently, rapid expansion of wastewater treatment plants without equal attention to the treatment of the produced sludge has generated increasing concerns. While the sludge is usually incinerated or used as an agricultural fertilizer and may contain numerous nutrients, there may also be harmful substances that complicate sludge management. Hence the removal of pollutants from the sludge is necessary before further usage. This paper discusses the characteristics of potable water treatment sludge containing a high aluminum content. Furthermore, an electrokinetic treatment is proposed to remove aluminum from this sludge by varying the type of solution contained in the cathode compartment and modifying the treatment time to optimize the efficiency of the process. Successful results were achieved where 60% of aluminum was collected on the cathode side with a consumed energy around of 1000–2000 kWh kg−1 of sludge weight.  相似文献   

3.
4.
The mechanisms of photooxidation of several polyether based polymers were compared in order to give general rules of orientation of the oxidative reactions. These polymers were a poly(ether-ester) and two poly(ether-urethane)s. The behavior of the polyether component as homopolymer was also studied. This study was extended to copolymers of fluorinated olefins and allyl or vinyl ethers, and the non fluorinated homologues. The elucidation of the photooxidation mechanisms was based on the identification of the photoproducts by analysis of both the solid polymeric matrix and the gaz phase formed on irradiation. It was shown that the photochemical sensitivity of the polyether component was responsible for the rapid oxidation of the copolymers. However, in the case of the fluorinated compounds, different behaviors were observed. It was shown that the presence of the fluorine atoms strongly influenced the orientation of the reaction and modified the oxidation kinetics. The reactivity of the methylene groups in α-position of the oxygen atom of the ether groups were not found to be equivalent regarding oxidation and the secondary was more oxidizable than the tertiary one.  相似文献   

5.
The characterization and isolation of sulfurous acid (H2SO3) have never been accomplished and thus still remain one of the greatest open challenges of inorganic chemistry. It is known that H2SO3 is thermodynamically unstable. In this study, however, we show that a Ci-symmetric dimer of sulfurous acid (H2SO3)2 is 3.5 kcal mol-1 more stable than its dissociation products SO2 and H2O at 77 K. Additionally, we have investigated the kinetic stability of the sulfurous acid monomer with respect to dissociation into SO2 and H2O and the kinetic isotope effect (KIE) on this reaction by transition-state theory. At 77 K, the half-life of H2SO3 is 15 x 10(9) years, but for the deuterated molecule (D2SO3) it increases to 7.9 x 10(26) years. At room temperature, the half-life of sulfurous acid is only 24 hours; however, a KIE of 3.2 x 10(4) increases it to a remarkable 90 years. Water is an efficient catalyst for the dissociation reaction since it reduces the reaction barrier tremendously. With the aid of two water molecules, one can observe a change in the reaction mechanism for sulfurous acid decomposition with increasing temperature. The most likely mechanism below 170 K is via an eight-membered transition-state ring; yet, above 170 K, a mechanism with a six-membered transition state ring becomes the predominant one. For deuterated sulfurous acid, this change in reaction mechanism can be observed at 120 K. Consequently, between 120 and 170 K, different predominant reaction mechanisms occur for the decomposition of normal and deuterated sulfurous acid when assisted by two water molecules. However, the much longer half-life of deuterated sulfurous acid and the stability of the sulfurous acid dimer at 77 K are encouraging for future synthesis and characterization under laboratory conditions.  相似文献   

6.
Disulfide bonds play an important role in determining the structure and stability of proteins and nanoparticles. Despite extensive studies on the oxidation of thiols for the synthesis of disulfides, little is known about the photooxidation of thiols, which may be a clean, safe, and economical alternative to the use of harmful and expensive metal-containing oxidants and catalysts. In this paper, we report the photooxidative coupling of thiophenol derivatives to disulfides. Para-substituted thiophenol derivatives, p-SHC(6)H(4)X (X = NO(2), COOH, Cl, and OCH(3)), are irradiated, and disulfides, X(2)(C(6)H(4))(2)S(2), are identified as the major photoproducts using Raman, UV-vis, IR, and NMR spectroscopies. For p-nitrothiophenol (pNTP), 4,4'-dinitrodiphenyldisulfide (DNDPDS) is produced in 81% yield. The product yield changes with pH, being the highest at pH ≈ 5, suggesting that both neutral thiol and anionic thiolate forms of pNTP are required for the photoreaction to occur. Excitation at 455 nm, at which the thiolate form of pNTP absorbs strongly, leads to the largest yield of DNDPDS, whereas very little DNDPDS is formed by excitation of the thiol form of pNTP at 325 nm. Our observations suggest that the photooxidation occurs via collisions of the electronically excited thiolate form of pNTP with the surrounding neutral thiol forms of pNTP. The photooxidation reaction happens regardless of the electron-withdrawing or electron-donating properties of the substituents if the pH and excitation wavelengths are properly chosen. The versatility of light and generality of the photooxidative coupling reaction of thiophenol derivatives may open new possibilities for selective and site-specific photocontrol of disulfide bond formation in biology and nanomaterial science as well as in synthetic chemistry.  相似文献   

7.
The photooxidative removal of analgesic pharmaceutical compound phenazopyridine (PhP) from aqueous solutions by UV/H2O2 system with a re-circulated photoreactor was investigated. Response surface methodology (RSM) was employed to optimize the effect of operational parameters on the photooxidative removal efficiency. The investigated variables were: the initial PhP and H2O2 concentrations, irradiation time, volume of solution and pH. The analysis of variance (ANOVA) of quadratic model demonstrated that the described model was highly significant. The predicted values of the photooxidative removal efficiency were found to be in a fair agreement with experimental values (R2 = 0.9832, adjusted R2 = 0.9716). The model predicted that the optimal reaction conditions for a maximum removal of PhP (>98%) were: initial PhP concentration less than 23 mg L–1, initial concentration of H2O2 higher than 470 mg L–1, solution volume less than 500 mL, pH close to 2 and irradiation time longer than 6 min.  相似文献   

8.
Different compositions of poly(methyl methacrylate-co-methyl acrylate) (PMMAMA), poly(methyl methacrylate-co-ethyl acrylate) (PMMAEA) and poly(methyl methacrylate-co-butyl acrylate) (PMMABA) copolymers were synthesized and characterized. The photocatalytic oxidative degradation of all these copolymers were studied in presence of two different catalysts namely Degussa P-25 and combustion synthesized titania using azobis-iso-butyronitrile and benzoyl peroxide as oxidizers. Gel permeation chromatography (GPC) was used to determine the molecular weight distribution of the samples as a function of time. The GPC chromatogram indicated that the photocatalytic oxidative degradation of all these copolymers proceeds by both random and chain end scission. Continuous distribution kinetics was used to develop a model for photocatalytic oxidative degradation considering both random and specific end scission. The degradation rate coefficients were determined by fitting the experimental data with the model. The degradation rate coefficients of the copolymers decreased with increase in the percentage of alkyl acrylate in the copolymer. This indicates that the photocatalytic oxidative stability of the copolymers increased with increasing percentage of alkyl acrylate. From the degradation rate coefficients, it was observed that the photocatalytic oxidative stability follows the order PMMABA > PMMAEA > PMMAMA. The thermal degradation of the copolymers was studied by using thermogravimetric analysis (TGA). The normalized weight loss and differential fractional weight loss profiles indicated that the thermal stability of the copolymer increases with an increase in the percentage of alkyl acrylate and the thermal stability of poly(methyl methacrylate-co-alkyl acrylate)s follows the order PMMAMA > PMMAEA > PMMABA. The observed contrast in the order of photostability and thermal stability of the copolymers was attributed to different mechanisms involved for the scission of polymer chain and formation of different products in both the processes.  相似文献   

9.
The reactions of singlet oxygen with diethyl sulfide (Et(2)S) in benzene alcohol mixtures have been examined. The salient discoveries include: (1) the rate constants of product formation, k(r), in benzene/methanol mixtures are a function of the concentration of methanol, (2) the ability of alcohols to supress physical quenching are a function of their pK(a)'s, and (3) trapping experiments with diphenyl sulfoxide are consistent with two distinct intermediates. A mechanism which involves formation of a persulfoxide followed by reaction with methanol to give a hydroperoxy-methoxy sulfurane is consistent with all of the results.  相似文献   

10.
The photochemical behaviour of several polyethylene/polyamide-6 blends was studied under conditions of artificial accelerated weathering. Particular attention was paid to five different compositions ranging from pure polyethylene to pure polyamide with blends of PE/PA-6 of various compositions: 75/25, 50/50 and 25/75 wt/wt%. Analysis by infrared spectroscopy of the chemical modifications caused by photooxidation showed that exposing the polyethylene/polyamide-6 blends to UV-light irradiation led to the formation of oxidation photoproducts in both polymer phases. In agreement with both the mechanical and spectroscopic analyses, the photooxidation rate of the blends was observed to be much higher than that of the homopolymers. The results given in this paper suggest that photooxidation of the PE/PA blends starts in the polyamide phase and that the subsequent photooxidation of the polyethylene phase may be initiated by the radicals coming from the oxidation of PA.  相似文献   

11.
The synthesis of arylamines from renewable resources under mild reaction conditions is highly desired for the sustainability of the chemical industry, where the production of hazardous waste is a prime concern. However, to date, there are very few tools in chemists’ toolboxes that are able to produce arylamines in a sustainable manner. Herein, a robust one-pot approach for constructing bio-based arylamines via a combined photooxidative dearomatization-rearomatization strategy is presented. The developed methodology enables the synthesis of structurally complex amines in moderate-to-good isolated yields using biomass-derived phenols, natural α-amino acids, and naphthols under remarkably mild reaction conditions. For the photooxygenation of phenols, a novel chrysazine-based catalyst system was introduced, demonstrating its efficiency for the synthesis of natural products – hallerone, rengyolone, and the pharmaceutically relevant prodrug DHED.  相似文献   

12.
Kinetic features and the mechanism of photooxidative decomposition of sodium dodecyl sulfate in an aqueous solution under the action of pulsed short-wavelength UV light with a continuous spectrum upon introduction of hydrogen peroxide was studied.  相似文献   

13.
Treatment of N,N‐dichloroperfluoroalkanesulfonylamines with sulfur powder at room temperature gave the title products RfSO2N=SCl2 in good yields. They reacted readily with dimethyl sulfoxide, chloral, DMF, benzophenone, and similar compounds to form to corresponding imines RfSO2N=YR1R2 (Y: S, C). A reaction mechanism, one involving formation of a four‐membered intermediate, is proposed. © 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 41–48, 1999  相似文献   

14.
1-Alkyl-substituted 1,5-diketones react with sulfurous reagents (H2S and P4S10) to give thiopyrylium salts primarily via a mechanism that is competitive with disproportionation. The reaction depends on the nature of the acidic reagent. Some properties of the compounds obtained are described.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 762–766, June, 1981.  相似文献   

15.
Acidic tropospheric aerosols contain inorganic species such as sulfurous acid (H(2)SO(3)). As the main alkaline species, ammonia (NH(3)) plays an important role in the heterogeneous neutralization of these acidic aerosols. An aerosol flow-tube apparatus was used to obtain simultaneous optical and size distribution measurements using FTIR and SMPS measurements, respectively, as a function of relative humidity and aerosol chemical composition. A novel chemiluminescence apparatus was also used to measure ammonium ion concentration [NH(4)(+)]. The interactions between ammonia and hydrated sulfur dioxide (SO(2)·H(2)O) were studied at different humidities and concentrations. SO(2)·H(2)O is an important species as it represents the first intermediate in the overall atmospheric oxidation process of sulfur dioxide to sulfuric acid (H(2)SO(4)). This complex was produced within gaseous, aqueous, and aerosol SO(2) systems. The addition of ammonia gave mainly hydrogen sulfite (SHO(3)(-)) tautomers and disulfite ions (S(2)O(5)(2-)). These species were prevalent at high humidities enhancing the aqueous nature of sulfur(IV) species. Their weak acidity is evident due to the low [NH(4)(+)] produced. Size distributions obtained correlated well with the various stages of particulate compositional development.  相似文献   

16.
The possibility of recovering rhenium and osmium from sulfurous gases generated by oxidative roasting of commercial molybdenite product was examined. When passing through solid carbon packing at a temperature in the range 288?C380°C, higher rhenium and osmium oxides are adsorbed on the surface of the packing to lower oxides, which allows their hydrochemical separation from the reductant with obtaining potassium perrhenate, potassium osmate, and osmium sulfide.  相似文献   

17.
Due to the presence and significance of alumina in the natural aquatic environment and its increasing application in drinking and wastewater purification, the knowledge of the structure of alumina and its possible interactions with organic and inorganic compounds in water are of great importance. This is of particular importance in both the understanding of natural aquatic environment processes and efficient industrial applications. The chemistry of alumina reactions in water is complex. The adsorption ability of alumina towards organic and inorganic compounds might be influenced by several factors such as: surface characteristics of the adsorbent (surface area, density, pore volume, porosity, pore size distribution, pH(PZC) as well as mechanical strength and purity), pH of the solution, ionic strength, composition of water and the physicochemical properties of adsorbates. The aim of this paper is to give a brief review of the properties of alumina and its reactivity with organic and inorganic compounds present in aqueous solutions. It also summarises the usage of alumina and alumina supported phases in water treatment technology.  相似文献   

18.
《Comptes Rendus Chimie》2009,12(8):882-888
Although water is essential for human survival and progress, it is distributed very unevenly and with a different purity over the surface of the earth. A variety of contaminants can be present in raw water, depending on its origin. The size of these contaminants ranges from the micrometer (e.g. bacteria) to the tenths of a nanometer order (ions). Membrane processes like microfiltration, ultrafiltration, nanofiltration and reverse osmosis could be a solution for an advanced physical treatment of water for drinking purposes as well as for agroindustrial sectors. Many applications are well assessed and are expanding very quickly; however, to obtain an ever-growing performance, it is necessary to prepare membranes with tailored structure and transport properties. Characterisation methods play also a role of paramount importance for the selection of the more appropriate membrane for the above-mentioned applications. In this work the main membrane preparation techniques and characterisation methods will be reviewed and discussed.  相似文献   

19.
New nitrogen-and-phosphorus-containing fibrous ion exchangers were produced by two-stage synthesis from Nitron fiber. The ion exchangers are efficient sorbents of heavy and nonferrous metals from aqueous solutions under dynamic conditions.  相似文献   

20.
Cross-flow microfiltration through a 0.8 μm inorganic tubular membrane was enhanced by coupling with a two electrode electrolysis cell producing hydrogen peroxide at high rate, without adding any chemical, by use of carbon felt cathode and dimensional stabilised anode (titanium coated with RuO2). Anodic oxygen and transfer from atmosphere supplied the required oxygen. The current should be maintained under a maximum value to avoid peroxide reduction. This electrochemical process, called electroperoxidation, upgraded the water quality by removing contaminants that limit mass transport through the membrane, i.e. turbidity, dissolved organic carbon (DOC) and microorganisms. Transient filtration was adjusted to an internal clogging model whose coefficient decreased at the same rate as DOC. The microfiltration steady state flux was multiplied by a factor proportional to the peroxide concentration introduced in the filtration loop. The induced resistance decreased simultaneously with chemical oxygen demand and 254 nm absorbance. Steady state fluxes 2.5 times higher than without treatment were experimentally obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号