首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amorphous silicon nanoparticles (Si NPs) embedded in silicon nitride (SiNx) films prepared by helicon wave plasma-enhanced chemical vapor deposition (HWP-CVD) technique are studied. From Raman scattering investigation, we determine that the deposited film has the structure of silicon nanocrystals embedded in silicon nitride (nc-Si/SiNx) thin film at a certain hydrogen dilution amount. The analysis of optical absorption spectra implies that the Si NPs is affected by quantum size effects and has the nature of an indirect-band-gap semiconductor. Further, considering the effects of the mean Si NP size and their dispersion on oscillator strength, and quantum-confinement, we obtain an analytical expression for the spectral absorbance of ensemble samples. Gaussian as well as lognormal size-distributions of the Si NPs are considered for optical absorption coefficient calculations. The influence of the particlesize-distribution on the optical absorption spectra was systematically studied. We present the fitting of the optical absorption experimental data with our model and discuss the results.  相似文献   

2.
The experimental X-ray emission spectra of titanium carbide, nitride and oxide have been obtained. Quantum-chemical calculations of the electronic structure of clusters in TiC, TiN and TiO have been carried out by the semiempirical Mulliken-Wolfsberg-Helmholtz method with self-consistency on charges and configurations. The results of these calculations are in good agreement with the X-ray spectroscopy data and offer a reasonable explanation of the experimental spectra. Chemical bonding and electronic structure of the compounds are discussed. Ionicity is shown to increase from TiC to TiO according to the electronegativity principle, the calculated charges on the metal ions being close to experimental estimates. The role of metal-metal and metal-nonmetal interactions in the chemical bonding is analysed. Vacancy models for TiO and their effect on the X-ray emission spectra are investigated. By the CNDO method with configurational interactions the optical spectrum of titanium carbide has been calculated. It is shown that this spectrum may be interpreted from the results for the [TiC6] cluster, without introducing the Lye-Logothetis band scheme with negative charge on the metal ion.  相似文献   

3.
We report first-principles calculations of the effects of quasiparticle self-energy and electron-hole interaction on the optical properties of single-walled boron nitride nanotubes. Excitonic effects are shown to be even more important in BN nanotubes than in carbon nanotubes. Electron-hole interactions give rise to complexes of bright (and dark) excitons, which qualitatively alter the optical response. Excitons with a binding energy larger than 2 eV are found in the BN nanotubes. Moreover, unlike the carbon nanotubes, theory predicts that these exciton states are comprised of coherent supposition of transitions from several different subband pairs, giving rise to novel behaviors.  相似文献   

4.
We investigate, using first-principles calculations, the electronic structure of substitutional and vacancy defects in a boron nitride monolayer. We found that the incorporation of a substitutional carbon atom induces appreciable modification on the electronic properties, when compared to a non-defective boron nitride sheet. The incorporation of substitutional carbon impurity also induces a significant reduction of the work function. In addition, we found that defects introduce electronic states in the energy-gap region, with strong impact on the optical properties of the material. The calculation results indicate that spin polarization is obtained when substitutional impurities or vacancy defects are introduced in the structure  相似文献   

5.
吕常伟  王臣菊  顾建兵 《物理学报》2019,68(7):77102-077102
本文采用基于密度泛函理论的第一性原理平面波赝势和局域密度近似方法,优化了立方和六方氮化硼的几何结构,系统地研究了零温高压下立方和六方氮化硼的几何结构、力学、电学以及光学性质.结构与力学性质研究表明:立方氮化硼的结构更加稳定,两种结构的氮化硼均表现出一定的脆性,而六方氮化硼的热稳定性则相对较差;电学性质研究表明:立方氮化硼和六方氮化硼均为间接带隙半导体,且立方氮化硼比六方氮化硼局域性更强;光学性质结果显示:立方氮化硼和六方氮化硼对入射光的通过性都很好,在高能区立方氮化硼对入射光的表现更加敏感.此外,还研究了高温高压下立方氮化硼的热力学性质,并得到其热膨胀系数、热容、德拜温度和格林艾森系数随温度和压力的变化关系.本文的理论研究阐述了高压下立方氮化硼和六方氮化硼的相关性质,为今后的实验研究提供了比较可靠的理论依据.  相似文献   

6.
Using first principles calculations, electronic and optical properties of indium nitride graphene-like structure have been studied under various stress and strain values. The results exhibit that this compound in the range of ±6 applied biaxial strain remains a direct band gap semiconductor. Also, exerting stress and strain reduces the energy band gap of the considered materials. The optical calculations illustrate that applying stress and strain on system results in blue and red shift in optical spectra. All obtained results presented that we can tune the optoelectronic properties of indium nitride by applying stress and strain.  相似文献   

7.
The electronic band structure of boron nitride compounds with crystal lattices of the sphalerite (c-BN) and wurtzite (w-BN) types is calculated by the local coherent potential method in the cluster muffin-tin approximation within the framework of the multiple scattering theory. The local partial densities of 2p states for boron and nitrogen in c-BN and w-BN modifications are compared with the experimental boron and nitrogen K x-ray emission spectra and band-structure calculations. A comparison of the total densities of states in c-BN and w-BN with the x-ray photoelectron spectra and the band calculations has revealed both similarities and differences in the electronic structures of these modifications. The fine structure in the vicinity of the valence band top of boron nitride in different crystal modifications is theoretically calculated for the first time. The specific features of the electronic structure and the x-ray spectra of boron nitride in different modifications are discussed.  相似文献   

8.
Silver nanoparticle thin films with different average particle diameters are grown on silicon substrates. Boron nitride thin films are then deposited on the silver nanoparticle interlayers by radio frequency (RF) magnetron sputtering. The boron nitride thin films are characterized by Fourier transform infrared spectra. The average particle diameters of silver nanoparticle thin films are 126.6, 78.4, and 178.8 nm. The results show that the sizes of the silver nanoparticles have effects on the intensities of infrared spectra of boron nitride thin films. An enhanced infrared absorption is detected for boron nitride thin film grown on silver nanoparticle thin film. This result is helpful to study the growth mechanism of boron nitride thin film.  相似文献   

9.
On the basis of the known reflection spectrum, we calculate a complete set of fundamental optical functions for cubic boron nitride (c-BN) in the region of 2–23 eV. The integral spectrum of dielectric permeability is decomposed into 16 elementary components. Three main parameters (maximum energy, half-width, and oscillator force) for each of the components are determined. Using the well-known theoretical calculations for bands of boron nitride as the base we suggest a scheme of the nature of these dielectric permeability components. To whom correspondence should be addressed. Udmurtiya State University, 1, Universitetskaya Str., Izhevsk, 426034, Russia:e-mail: sobolev@matsim.udmurtia.su. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 66, No. 4, pp. 579–583, July–August, 1999.  相似文献   

10.
We present a theory for the inelastic scattering cross-section in hexagonal boron nitride. Explicitly accounting for effects of beam convergence and a finite collection aperture, we present an approach that well describes the form of the observed Boron K-edge. We use this technique to investigate the crystallographic structure of boron nitride nanometric hollow spheres.  相似文献   

11.
Akbar Omidvar 《Molecular physics》2013,111(23):3900-3908
The sensitivity of a new two-dimensional (2D) carbon allotrope built from sp- and sp2-hybridised carbon atoms, graphyne (GY), as well as its boron nitride analogue (BN-yne) towards CO molecule has been theoretically investigated. Indeed, a theoretical understanding of the interaction between gas molecules and extended carbon-based network structures is crucial for developing new materials that could have a wide range of applications. Here, we report our first-principles calculations to explore the impact of metal decoration on the GY and BN-yne upon the CO adsorption. We predict that Ca and Li decorations significantly enhance the CO-sensing ability of the GY and BN-yne compared to that of their pristine sheets. Owing to strong interactions between CO and the decorated GY and BN-yne, dramatic changes in the electronic properties of the sheets together with large band gap variations were observed. The present study sheds a deep insight into the sensing properties of the novel carbon-based 2D structures beyond the graphene sheet.  相似文献   

12.
Electronic properties of single-walled boron nitride nanotube in zig-zag form are numerically investigated by replacing B atoms with C atoms. Using a tight-binding Hamiltonian, the methods based on Green’s function theory, Landauer formalism and Dyson equation, the electronic density of states and electronic conductance in boron nitride nanotube and boron carbonitride nanotube are calculated. Our calculations indicate that in a boron nitride nanotube, the localized states associated with C impurities appear as the concentration of C atoms increases. The boron carbonitride nanotube thus behaves like a semiconductor. Also, by increasing the C atom concentration, the voltage in the first step on the IV characteristics decreases, whereas the corresponding current increases.  相似文献   

13.
In the present contribution it is applied first-principles calculations to investigate the electronic structure of boron nitride M?bius stripes, with armchair and zigzag configurations, obtained from boron nitride nanoribbons using a ??cut?? and ??glue?? process. The results show that the structural stability strongly depends on the length and width of the stripe. It is also found that the energy gap and work function depends on the structure chirality. Due to the formation of an antiphase boundary, zigzag stripes present tunable electronic properties, with significant potential for technological applications.  相似文献   

14.
The present paper aims to study the structural, electronic, optical and thermal properties of the boron nitride (BN) and BAs bulk materials as well as the BNxAs1–x ternary alloys by employing the full-potential-linearised augmented plane wave method within the density functional theory. The structural properties are determined using the Wu–Cohen generalised gradient approximation that is based on the optimisation of the total energy. For band structure calculations, both the Wu–Cohen generalised gradient approximation and the modified Becke–Johnson of the exchange-correlation energy and potential, respectively, are used. We investigated the effect of composition on the lattice constants, bulk modulus and band gap. Deviations of the lattice constants and the bulk modulus from the Vegard’s law and the linear concentration dependence, respectively, were observed for the alloys where this result allows us to explain some specific behaviours in the electronic properties of the alloys. For the optical properties, the calculated refractive indices and the optical dielectric constants were found to vary nonlinearly with the N composition. Finally, the thermal effect on some of the macroscopic properties was predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account.  相似文献   

15.
We have studied, through ab initio calculations, the stability of 60° and 120° boron nitride nanocones containing mono and multiple boron, nitrogen, and carbon vacancies. The stability of the vacancies as well as the structures reconstruction mechanism have been investigated. Our results indicate that the stability of the cones presenting such vacancies strongly depends on growth conditions. We have also found that multiple vacancies display formation energies that are comparable, and in some cases, even lower to the ones presented by monovacancies. Therefore, our results allow us to conclude that the formation energy does not depend on the vacancy size. Finally, for 120° cones, we can verify that the stability of the boron and nitrogen vacancies depends on the position where the atom has been removed.  相似文献   

16.
The electronic structure and phonon density of B(13)B(2) boron carbide calculated by Calandra et al (2004 Phys. Rev. B 69 224505) defines this compound as metallic, and the authors predict superconductivity with T(C)s up to 36.7 K. Their results are affected by the same deficiencies as former band structure calculations on boron carbides based on hypothetical crystal structures deviating significantly from the real ones. We present optical mid IR/far IR (MIR/FIR) spectra of boron carbide with compositions between B(4.3)C and B(10.37)C, evidencing semiconducting behaviour at least down to 30 K. There is no indication of superconductivity. The spectra yield new information on numerous localized gap states close to the valence band edge.  相似文献   

17.
An attempt to refine the local structure of a layered structure such as mica is made by combining angle‐resolved XANES (AXANES) and single‐crystal X‐ray diffraction (SC‐XRD) experiments. Ab initio calculations of AXANES spectra of several tri‐octahedral micas have been used to further interpolate experimental data and to deduce physico/chemical effects. Structural distortions have been found highly correlated with the compositional disordering that arises from electronic interactions between anions and cations, and extend the interlayer entering deep into nearby tetrahedral and octahedral sheets. Multiple occupations at the same atomic site have been investigated in detail both in the parallel and perpendicular components of AXANES spectra. Finally, the best fit obtained, computed in the framework of the multiple‐scattering theory, is presented and the limitations of the muffin‐tin potential in layered systems are briefly discussed.  相似文献   

18.
We show that the optical absorption spectra of boron nitride (BN) nanotubes are dominated by strongly bound excitons. Our first-principles calculations indicate that the binding energy for the first and dominant excitonic peak depends sensitively on the dimensionality of the system, varying from 0.7 eV in bulk hexagonal BN via 2.1 eV in the single sheet of BN to more than 3 eV in the hypothetical (2, 2) tube. The strongly localized nature of this exciton dictates the fast convergence of its binding energy with increasing tube diameter towards the sheet value. The absolute position of the first excitonic peak is almost independent of the tube radius and system dimensionality. This provides an explanation for the observed "optical gap" constancy for different tubes and bulk hexagonal BN.  相似文献   

19.
K.L. Yao  Y. Min  Z.L. Liu  S.C. Zhu 《Physics letters. A》2008,372(34):5609-5613
We perform first-principles calculations of spin-dependent quantum transport in V doped boron nitride nanotube: the junction of pristine (6,0) boron nitride nanotube in contact with V doped (6,0) boron nitride nanotube electrodes. Large tunnel magnetoresistance and perfect spin filtration effect are obtained. The zero bias tunnel magnetoresistance is found to be several thousand percent, it reduces monotonically to zero with a voltage scale of about 0.65 V, and eventually goes to negative values after the bias of 0.65 V. The ratio of spin injection is above 95% till the bias of 0.85 V and is even as large as 99% for the bias from 0.25 eV to 0.55 eV when the magnetic configurations of two electrodes are parallel. The understanding of the spin-dependent nonequilibrium transport is presented by investigating microscopic details of the transmission coefficients.  相似文献   

20.
We have investigated, using first-principles calculations, the role of a substitutional carbon atom on the electronic properties of boron nitride monolayers, nanotubes, and nanocones. It is shown that electron states in the energy-gap are independent of the curvature, being the same for the monolayer, for the cone and for the tube. It is also found, that the presence of carbon in the boron nitride compounds induces a spin polarization, with magnetic moment of 1.0 μB, which does not depend on the curvature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号