首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用自制的实验系统进行了醋酸溶液中低浓度瓦斯催化氧化制甲醇研究。实验结果表明,以Pd(OAc)2为催化剂,反应体系中添加对苯醌或四氯对苯醌可改善甲烷活化环境,四氯对苯醌对瓦斯催化氧化过程的作用效果好于对苯醌。四氯对苯醌用量、反应压力和反应温度对瓦斯催化氧化具有重要影响。甲醇生成量随四氯对苯醌用量、反应压力和反应温度升高而增加。CH3OH是通过反应过程中产生的H2O2与CH4相互作用形成的。CH3COOCH3一部分是由Pd2+直接氧化CH4得到的;另一部分是由CH3OH与反应溶剂CH3COOH通过酯化反应形成的。  相似文献   

2.
甲醛作为一种典型的室内挥发性有机污染物,对人体健康危害很大.目前,在可用于室内甲醛脱除的诸多方法之中,臭氧催化氧化法因可于室温下使用廉价的金属氧化物催化剂实现对甲醛的高效脱除,从而受到了科研工作者的广泛关注.然而,考虑到室内甲醛的浓度极低,且存在着长期缓慢释放的特点,传统的臭氧催化氧化法应用于实际的室内甲醛脱除不仅会造成能量的浪费,而且还易因未完全分解臭氧的连续释放带来二次污染问题.为了提高臭氧催化氧化脱除甲醛过程的臭氧利用率,降低能耗,并有效缓解未分解臭氧引起的二次污染,本文将一种循环的甲醛存储-臭氧催化氧化新方法应用于室内低浓度甲醛的脱除.该新方法包含甲醛存储与臭氧催化氧化两个过程,在存储阶段低浓度甲醛吸附存储于催化剂表面,而在臭氧催化氧化阶段臭氧将存储的甲醛氧化为CO_2与H_2O,并重新释放催化剂表面的吸附位.因负载型氧化锰具有优良的臭氧分解能力,本研究以Al_2O_3负载的MnO_x为催化剂,通过研究前驱体及担载量对甲醛脱除反应的影响,筛选出了最优的MnO_x/Al_2O_3催化剂,并对相对湿度的影响规律进行了考察,最后通过低浓度甲醛存储-臭氧催化氧化循环实验验证了该甲醛臭氧催化氧化新过程的可靠性.我们采用传统的等体积浸渍法,基于不同的前驱体制备MnO_x/Al_2O_3催化剂.XRD表征结果表明,乙酸锰为前驱体制得的MA/Al_2O_3催化剂中MnO_x相主要为Mn3O4(粒径约为6.0 nm);而硝酸锰前驱体所得MN/Al_2O_3催化剂中则含有MnO2与Mn_2O_3相,且其MnO_x颗粒粒径较大,约为9.5 nm.XPS测试结果表明,MA/Al_2O_3催化剂含有Mn~(2+),Mn~(3+)及Mn~(4+),其中Mn~(3+)与Mn~(4+)的含量分别为75%与12%;而MN/Al_2O_3催化剂则仅含有Mn~(3+)与Mn~(4+),含量分别为35%与65%.上述XRD与XPS结果相一致,说明以乙酸锰为前驱体所得催化剂的分散度较高且易形成低氧化态的Mn.甲醛存储-臭氧催化氧化实验结果表明,与Al_2O_3及MN/Al_2O_3相比,MA/Al_2O_3催化剂具有更高的甲醛存储与催化氧化脱除性能.基于MA/Al_2O_3催化剂,不同Mn负载量下的甲醛存储与臭氧催化氧化实验结果表明,Mn负载量为10 wt%时MA/Al_2O_3的性能最佳.因而,进一步的实验中我们均选用最优的10 wt%MA/Al_2O_3为催化剂,其在50%相对湿度下的甲醛存储量为26.9μmol/mL,臭氧催化氧化阶段碳平衡为92%,CO_2选择性为100%.相对湿度的影响结果(23°C)则表明,由于水分子与甲醛分子间存在着竞争吸附作用,甲醛存储容量随相对湿度的增加而降低;但因相对湿度增加可建立利于甲醛氧化的新途径,故臭氧催化氧化性能随相对湿度增加而增强.综合考虑,10 wt%MA/Al_2O_3上甲醛存储-臭氧催化氧化的最优相对湿度为50%.为验证所提出新方法的实用性,我们基于10 wt%MA/Al_2O_3开展了甲醛存储-臭氧催化氧化的4次循环实验.4次循环实验中的甲醛存储以及臭氧催化氧化处理的规律可基本保持一致.50%相对湿度下,低浓度甲醛(15×10-6)在空速为27000 h-1时的穿透时间为110 min,而在臭氧催化氧化阶段(150×10-6臭氧,空速15000 h-1)仅需约50 min即可实现对存储甲醛的氧化脱除(碳平衡大于92%,CO_2选择性100%),表明该新方法较传统的臭氧催化氧化方法臭氧用量可节省60%.  相似文献   

3.
目前,天然气转化为高附加值化工产品的应用越来越受到人们关注.甲烷作为天然气的主要成分,其转化和应用是天然气化工领域的重要研究方向.而甲烷直接氧化制甲醇长久以来一直是研究重点.甲烷直接氧化制甲醇与传统的甲烷二步法间接转化相比,有节能和工艺简化的突出特点.然而,甲醇直接氧化制甲醇过程所面临的主要问题有:(1)甲烷分子的活化能很高,需要苛刻的操作条件才能活化参与反应;(2)反应进行的程度难以控制,生成的甲醇会进一步被氧化生成较多副产物,大大降低甲醇收率.因此,高效活化甲烷分子和抑制甲醇深度氧化是促进该过程工业化的重要研究内容.本文主要论述了非均相、气相均相和液相体系中甲烷直接氧化制甲醇的研究进展.在甲烷非均相氧化过程中,采用过渡金属氧化物作为催化剂在高温条件下催化甲烷部分氧化反应,其中,钼系和铁系催化剂的研究最为广泛.研究表明,MoO_3可作为催化剂的主要活性组分,尤以MoO_3/Ga_2O_3催化剂性能最好,得到甲醇收率最高.在铁系催化剂中,Fe-ZSM-5催化反应的甲醇选择性和收率都相对较高;但是每次反应后催化剂都需要重新活化,这种间歇性操作会增加成本,不利于工业化应用.总之,甲烷的非均相氧化过程存在易形成金属聚集体、催化剂选择性低以及甲醇收率低(5%)等问题,需要深入系统地研究解决.然而,与非均相氧化过程相比,操作较为简单的甲烷气相均相氧化作为目前最有工业前景的过程受到越来越多关注.在此过程中,影响反应的主要因素有反应器、反应条件(反应压力、反应温度和反应时间等)以及添加的介质等.反应器的特殊设计需要考虑的方面有反应产物的分离与转移、反应热的移除以有效提高甲烷的转化率,比如膜反应器对物质的分离作用.反应压力对反应过程的影响较为复杂.基于动力学因素,提高反应压力可以较大幅度地增加甲醇收率,同时最佳反应温度降低,但是,当压力高于8.0MPa时,设备成本消耗大幅增加.另外,研究表明,进料中加入NO_x作为添加介质可以提高甲烷转化率和甲醇选择性,同时降低初始反应温度.与前两个氧化体系相比,液相均匀氧化过程能够获得较高的甲烷转化率与甲醇选择性.但是液相体系中强腐蚀性介质的使用增加了设备成本,阻碍了该过程工业化的应用进程.因此,促进液相体系工业化的关键就是开发绿色高效的催化剂.  相似文献   

4.
采用TBHP作为氧化剂,发展了钯催化芳基偶氮化合物N=N双键断裂的氧化羰基化反应.芳基偶氮的羰基化反应在Pd(OAc)2(5%),MeO-BIPHEP(5%),芳基偶氮(0.2 mmol),TBHP(2 equiv),H2O(1 equiv),DCE(1 mL),CO(3.0 MPa)的条件下110℃反应12 h后,经柱层析纯化分离得到31%-91%的芳基脲.初步的机理研究表明,芳基偶氮化合物的N=N双键断裂原位产生芳基胺,再进一步氧化羰基化生成芳基脲.  相似文献   

5.
苯酚选择性氧化制备对苯醌是一个有重要工业应用价值的反应.在有机硒催化下,以过氧化氢为氧化剂氧化苯酚,高选择性地生成了对苯醌.与已有技术相比,有机硒催化氧化反应可避免使用金属催化剂,从而避免产物中的金属残留.该反应过程清洁,不产生废弃物,并可在温和条件下发生.使用该方法,对苯醌选择性已经能达到91.6%.  相似文献   

6.
钯基纳米材料是甲酸电氧化反应的优良催化剂.本工作制备了两个系列钯基催化剂,并考察了聚苯胺对钯上甲酸电氧化反应的助催化作用.一种是以聚苯胺为基底,在其表面电沉积钯纳米粒子,制得n PANI/Pd催化剂(n表示聚合苯胺的循环数);另一种是直接在商业Pd/C催化剂表面电聚合苯胺,制得Pd/C/n PANI催化剂.结果显示,聚苯胺单独存在时对甲酸电氧化反应没有催化活性,但其可对钯上甲酸电氧化反应呈现明显的促进作用,且促进作用与聚苯胺的厚度(聚合循环数)密切相关.在两个系列催化剂中,15PANI/Pd和Pd/C/20PANI显示出最高的催化性能.15PANI/Pd中钯的质量比催化活性是纯钯催化剂的7.5倍;Pd/C/20PANI中钯的质量比催化活性和本征催化活性分别是商业Pd/C催化剂的2.3和3.3倍.钯催化性能的提升与聚苯胺和钯纳米粒子间的电子效应有关.  相似文献   

7.
燃料电池具有能量转换效率高的优点,是能量转换与储存的高效器件之一.目前,燃料电池阴极氧还原反应(ORR)动力学缓慢,并且催化ORR大量使用铂碳(Pt/C)催化剂,由于Pt储量少,价格高,载体碳材料易发生碳蚀导致催化剂稳定性降低,限制了其进一步商业化应用.钯(Pd)与Pt为同族元素,具有相似的电子结构和化学性质,其储量是Pt的50倍,同时, Pd具有良好的抗甲醇毒性和抗一氧化碳毒性,因此,被视为燃料电池中阴极Pt催化剂的潜在替代品.但商用Pd/C催化剂的ORR活性较Pt/C差,因此,大量的研究工作集中在提高Pd基ORR催化剂的活性方面:将Pd与具有3d轨道的金属形成合金或将Pd负载到不同的载体上.通过选择合适的载体影响Pd的电子结构,从而提高催化剂活性和稳定性,是一种较简单的、有利于规模化生产Pd基ORR催化剂的方法.碳化硅(SiC)具有良好的电化学稳定性、热稳定性、机械强度和较强的供电子能力,可被用作ORR的金属催化剂载体.然而,由于金属与SiC作用较弱,需要制备特殊形貌的SiC或将SiC表面改性;通常,这些SiC基载体的制备过程复杂并且成本高.而在有氧条件下制备、保存或使用SiC时,...  相似文献   

8.
甲烷直接氧化制甲醇Ⅱ.催化膜反应器(CMR)   总被引:1,自引:0,他引:1  
采用溶胶-凝胶(Sol-Gel)法制备了微孔结构均匀的“SiO_2/陶瓷”膜和“Mo-Co-·O/SiO_2/陶瓷”催化功能膜,并用XRD、SEM和孔径测定等技术进行了表征。在常压、500~700℃的条件下,在催化膜反应器(CMR)中考察了甲烷氧化制甲醇的反应。在相似的反应条件下(转化率为1.0%),用CMR(甲醇选择性11.2%)可获得较固定床反应器(甲醇选择性4.5%)高得多的甲醇选择性。  相似文献   

9.
乙烯是最为重要的化工原料之一,目前其工业来源主要来自于烃类的水蒸汽裂解过程.该过程本质上是一个高温均相裂解过程,温度(800℃)高,能耗大,碳排放严重.乙烷氧化脱氢制乙烯属于放热反应,反应温度低,速率快,无积碳等限制,是一条更富有竞争力的工艺路线.然而,常用的金属或金属氧化物催化剂容易导致乙烯深度氧化,从而降低了乙烯选择性.纳米碳材料在烃类氧化脱氢反应中展现出一定的催化活性,但容易被氧化,难以用于反应温度高的乙烷氧化脱氢反应.本文报道了羟基化的氮化硼(BNOH)可高效催化乙烷氧化脱氢制乙烯.氮化硼边沿羟基官能团脱氢生成了动态活性位,从而引发了乙烷的脱氢反应.BNOH对乙烷氧化脱氢制乙烯显示出高选择性.当乙烷转化率在11%,乙烯选择性可高达95%;当乙烷转化率增加到40%,乙烯选择性保持在90%.重要的是,当乙烷转化率超过60%时,BNOH仍然可保持80%的乙烯选择性以及50%的乙烯收率.这些性能指标与现有工业乙烷水蒸气裂解过程运行性能相当.进一步优化反应条件,BNOH催化剂能够实现高达9.1g_(C2H4)g_(cat)~(-1)h~(-1)的时空收率.经过200 h的氧化脱氢反应测试,BNOH催化剂活性和选择性基本恒定,表明其具有非常好的稳定性.X射线粉末衍射结果显示,反应前后BNOH催化剂的物相没有发生变化.透射电子显微镜测试证实,反应后BNOH催化剂的形貌和微观结构也没有明显改变.X射线光电子能谱结果显示,反应200 h后BNOH催化剂表面的氧含量仅从反应前的6.9 atom%微增到8.3 atom%.~1H固体核磁共振谱测试显示,反应200 h后,BNOH催化剂上羟基含量无明显改变.结合原位透射红外光谱和同位素示踪实验,初步确定了BNOH催化剂上引发乙烷氧化脱氢反应的活性中心.氮化硼边沿的氧官能团并不能引发乙烷的氧化脱氢反应,而羟基官能团才是氧化脱氢反应发生的活性位.在乙烷氧化脱氢条件下,分子氧脱除羟基官能团上的氢原子动态生成BNO~·和HO_2~·活性位.密度泛函理论计算表明,乙烷首先在BNO~·或HO_2~·位活化生成乙基自由基,这些中间物进一步与气相氧物种发生反应脱氢生成乙烯.动力学测试结果也验证了上述实验和理论结果.  相似文献   

10.
直接催化甲烷(CH4)氧化转化制备甲醇(DMTM)是具有较高绿色化学原子经济性的反应过程,且可在常温下进行,是潜在的实现CH4转化升级的重要过程.作为“圣杯反应”, DMTM性能通常显著受氧化剂影响,使用氧气(O2)作为氧化剂一步实现DMTM仍然极具挑战性.至今,双氧水(H2O2)仍是被报道最多的具有较高CH4转化速率和甲醇(CH3OH)选择性的绿色氧化剂.为了深入理解氧化剂如何影响DMTM反应性能,本文基于密度泛函理论计算和微观动力学分析研究了在Cu-ZSM-5, Cu-MOR和Cu-SSZ-13三种具有不同微孔尺寸的单核铜分子筛上DMTM反应机理,以确定H2O2作为氧化剂在DMTM反应中的优势和局限性.通过理论计算对比在反应条件下O2和H2O2的O–O键活化以及CH4的C–H键活化过程,发现在单核Cu分子筛中, H  相似文献   

11.
挥发性有机物(VOCs,例如甲苯和二甲苯)不仅危害人身健康,而且对大气环境造成严重污染.由于去除效率高、无二次污染以及耗能低等优点,催化氧化法被认为是消除VOCs的有效方法之一.该方法的关键是高效催化剂的研发.由于具有良好的低温催化氧化性能,过渡金属氧化物负载的贵金属催化剂备受关注.相比于单组分贵金属负载型催化剂,双组分贵金属负载型催化剂的催化活性、水热稳定性能和抗硫中毒性能均有显著提高.本文采用熔融盐法和聚乙烯醇保护的硼氢化钠还原法制备了八面体状Co_3O_4负载的AuPd(x(AuPd_y)/Co_3O_4;AuPd负载量x=(0.18,0.47,0.97)wt%;Pd/Au摩尔比y=1.85,1.93,1.92)合金纳米催化剂.采用X射线衍射、扫描电子显微镜、透射电子显微镜、选区电子衍射、氢气程序升温还原、氧气程序升温脱附和X射线光电子衍射等技术对催化剂物化性质进行了表征.利用固定床微型反应器评价了催化剂对甲苯和邻二甲苯完全氧化反应的催化性能.研究结果表明,采用熔融盐法制得的Co_3O_4具有规整八面体形貌,棱长约为300 nm.AuPd合金纳米粒子均匀分布在Co_3O_4表面,粒径为2.7-3.2 nm.在所得催化剂中,0.96(AuPd_(1.92))/Co_3O_4催化剂对甲苯和邻二甲苯完全氧化反应表现出较高的催化活性.在空速为40000 mL/(g·h)时,甲苯和邻二甲苯转化率达到90%所需的温度分别为180和187℃.我们认为0.96(AuPd_(1.92))/Co_3O_4催化剂较为优异的催化性能与AuPd纳米粒子和Co_3O_4之间的强相互作用和较高的吸附氧浓度有关.  相似文献   

12.
《电化学》2021,(3)
生物柴油工业的蓬勃发展带来大量副产品丙三醇(甘油),因此如何将甘油转化为高附加值产品具有重要的研究价值。在各种方法中,电催化氧化由于其条件温和、环境友好和高效率而备受关注。然而,甘油的电氧化非常复杂,涉及许多反应途径和多个电子和质子转移过程,如何合理设计对目标产物具有高选择性的催化剂是很大的挑战。在本文中,我们主要概述了铂和钯基催化剂上甘油电氧化研究的最新进展。我们首先总结了基于原位和在线谱学研究以及理论计算获得的影响其电催化活性和选择性的因素。然后,选择代表性文献来说明这些因素如何应用于研制高效甘油电氧化催化剂。最后,提出了未来研究中要解决的关键问题。  相似文献   

13.
由于工业快速发展和人类活动加剧,作为最重要温室气体二氧化碳(CO2)的排放问题已经受到全球广泛关注,因此将CO2转化成甲醇等碳氢化合物不仅具有重要的科学意义,还具有广阔应用前景.Cu/Ce O2是重要的CO2加氢催化剂,但是由于Cu O-Ce O2界面存在状态在反应过程中较复杂,例如Cu氧化数可能存在0,+1和+2,Ce存在着+3和+4等氧化数;相应催化剂中氧化还原循环种类较多,存在着Cu2+/Cu+,Cu2+/Cu0,Cu+/Cu0和Ce4+/Ce3+等氧化还原对;Ce O2极易形成氧空穴;此外,Cu与Ce O2也易形成固溶体等,因此Cu/Ce O2的催化活性中心目前仍存在着争议.同时Cu/Ce O2催化剂价态和存在...  相似文献   

14.
采用溶胶-凝胶(Sol-Gel)法制备了微孔结构均匀的“SiO2/陶瓷”膜和“Mo-Co-O/SiO2/陶瓷”催化功能膜,并用XRD、SEM和孔径测定等技术进行了表征。在常压,500~700℃的条件下,在催化膜反应器(CMR)中考察了甲烷氧化制甲醇的反应。在相似的反应条件下(转化率为1.0%),用CMR(甲醇选择性1?.2%)可获得较固定床反应器(甲醇选择性4.5%)高得多的甲醇选择性。  相似文献   

15.
考察了Pd(OAc)2-对苯醌-CO催化剂体系中甲烷有氧选择氧化制甲醇反应的性能。结果表明,在Pd(OAc)2用量为100μmol时,该催化剂体系中对苯醌和CO的最佳用量分别是1 000μmol和0.4 MPa。在讨论反应温度、反应时间及反应溶剂对甲烷选择氧化影响的基础上,得出在原料气组成为2.5 MPa甲烷+0.4 MPa氧气+0.4 MPa氮气及最佳催化剂用量的条件下,该催化剂体系选择性催化氧化甲烷的适宜工艺条件为反应温度130℃、反应时间3 h、溶剂中CH3COOH与H2O的体积比为4∶1。在此工艺条件下,目标产物甲醇的生成量为1 650μmol。  相似文献   

16.
Pt催化剂是电催化领域用途最为广泛的贵金属催化剂.Pt资源稀缺,价格昂贵,同时它的物理化学特性又决定了其在多种催化反应中难以被替代.在质子交换膜燃料电池的小分子醇类电氧化过程中,难免存在Pt的毒化现象,其催化性能有待进一步提升.因此,围绕着Pt催化剂纳米结构的设计、抗毒性及反应机理的探索一直是电催化研究面临的重要课题.目前,已被广泛认可的提高Pt催化性能的方法之一是引入第二种金属,通过金属间协同效应(双功能机理)、张力效应或电子效应等对Pt的催化行为进行改性.对于由双/多金属组成的纳米结构催化剂,无论是协同效应还是电子效应,催化活性的提高都需要金属间有丰富的接触界面和恰当的邻近状态.通过调变两组元的种类、原子比和接触状态等可以实现对金属-金属界面的调控,进而调变催化剂性能.除金属助剂外,金属氧化物对Pt催化剂的助催化作用也引起广泛关注.由于金属氧化物与Pt之间的密切接触作用,氧化物的形貌特点对Pt的催化性能可产生重要影响.到目前为止,有关催化剂形貌效应的研究主要集中于贵金属纳米颗粒上(Pt,Au,Pd等),但关于金属氧化物载体/助剂的形貌对贵金属催化性能影响的研究尚不多.具有明确形貌的金属氧化物载体/助剂,暴露的晶面不同,表面原子的配位状态也不同,从而造成与之密切接触的Pt的性质发生改变.因此,金属氧化物的表面性质以及Pt-金属氧化物的界面性质将对电催化性能产生重要影响,深入阐释贵金属-金属氧化物的表/界面性质以及建立有效的构效关系,对设计和制备高效电催化剂具有一定的指导意义.为了提高Pt基催化剂活性、抗CO中毒能力以及稳定性,本文采用共沉淀法和水热法分别制备了纳米棒和六边形纳米片状的Fe_2O_3作为Pt催化剂的助剂,考察了助剂形貌对Pt催化剂在碱性介质中催化氧化甲醇的促进作用.通过X射线衍射、扫描电子显微镜、透射电子显微镜、X射线光电子能谱以及电化学技术对催化剂进行了表征.结果显示,Fe_2O_3的存在能显著提高Pt催化剂在碱性介质中对甲醇氧化的电催化性能,而且以Fe_2O_3纳米棒为助剂制备的Pt-Fe_2O_3/C-R催化剂催化活性以及稳定性比Fe_2O_3纳米片为助剂制备的Pt-Fe_2O_3/C-P催化剂更高.这种促进效应可能与助剂Fe_2O_3的形态有关.Pt-Fe_2O_3/C-R催化剂中Pt的质量比活性为5.32 A/mgPt,本征活性为162.7 A/m2Pt,分别是Pt-Fe_2O_3/C-P催化剂的1.67和2.04倍,是商业PtRu/C样品的4.19和6.16倍.协同效应和电子效应是Pt催化性能提升的主要原因.此外,Pt-Fe_2O_3/C-R样品中高价态Pt的含量较高,可能也是加速甲醇氧化反应动力学的原因之一.高价态的Pt可能会增强甲醇分子在Pt表面的吸附强度,促进Pt上甲醇氧化反应初始步.这些发现不仅可对甲醇电催化氧化机理有了更深的理解,而且对设计和制备高性能甲醇氧化电催化剂也具有一定的指导意义.  相似文献   

17.
低碳烯烃(乙烯、丙烯等)是重要的基本有机原料,一般通过蒸汽裂解或催化裂解生成得到。基于中国的资源结构特点,发展非石油资源路线合成低碳烯烃具有重要的战略意义.其中从煤、天然气等资源出发,通过甲醇合成低碳烯烃就提供了这样一条可替代的路线.因此分子筛催化甲醇制烯烃(MTO)反应在过去几十年获得了广泛的关注和研究.为了获得高的产物选择性,一般要求MTO分子筛催化材料具有较小的孔道结构以及合适的笼结构,H-SAPO-34和H-SAPO-18分子筛就具有这样的空间结构特点.但是MTO催化反应产物分布多样复杂,因此需要深入认识MTO催化反应机理,从而优化设计分子筛结构和反应条件.目前已经形成的共识认为,MTO催化反应沿着烃池反应机理进行,但是烃池活性中心的结构还存在很多争议.我们曾系统研究了H-SAPO-18分子筛中多甲基苯的分布,以及催化MTO反应的芳烃循环路线,指出多甲基苯路线的总吉布斯自由能垒高于200 k J/mol(673 K).本文以四甲基乙烯(TME)作为代表性的烯烃烃池活性中心,系统研究了H-SAPO-18分子筛催化MTO反应的烯烃循环路线.TME循环路线的总吉布斯自由能垒不大于150 k J/mol,远小于芳烃循环的总能垒.因此,烯烃本身有很大可能是H-SAPO-18催化MTO反应的烃池活性中心.我们也指出了芳烃循环和烯烃循环路线的相似性,这包括基元反应的相似性和中间体结构的相似性.或者可以说,芳烃循环和烯烃循环路线机理上没有区别,关键是为了得到具有烷基(侧)链的裂解前驱体,最后通过裂解生成低碳烯烃.在烯烃循环路线中,产物选择性与裂解前驱体(高碳烯烃、碳正离子等)的分布以及裂解动力学有关.计算发现生成乙烯和丙烯的裂解基元反应能垒与裂解前驱体的碳数之间存在线性关系.本文进一步强调了分子筛催化MTO反应中烯烃活性中心的重要性,并且清楚指出了烯烃循环和芳烃循环的机理相似性.  相似文献   

18.
甲醛是致癌致畸物并具有较强的光化学活性.它既来源于纺织、农药、板材或其他精细化学品的生产过程,又来源于机动车尾气和室内各种装潢材料.为了人体健康和大气环境去除甲醛非常必要.用催化氧化法去除甲醛是一种很有前景的技术,但是该技术的关键是研究和发展催化剂.近年来,用于甲醛氧化的催化剂主要分为贵金属催化剂和过渡金属氧化物催化剂.贵金属催化剂是将Pt,Pd,Au,Ag等贵金属负载在不同类型的载体上而制得.载体可分为常见载体、传统金属氧化物载体和特殊形貌金属氧化物载体.常见载体是具有较大比表面积的SiO_2,Al_2O_3,TiO_2和分子筛等.这类载体有利于活性位的暴露以及反应物和产物的吸附和扩散,而且还能增强载体和活性组分的协同作用.负载在常见载体上的不同贵金属催化剂,其甲醛氧化活性从强到弱排列是:PtPdRhAuAg.用这种载体制备的催化剂具有很出色的应用前景.比如Na-Pt/TiO_2是甲醛氧化活性最好的催化剂,目前己被应用在空气净化器中,其次是Pt/TiO_2和Pd/TiO_2.传统金属氧化物载体主要是采用沉淀法、共沉淀法制备的CeO_2,Fe_2O_3,Co_3O_4,MnO_2及其复合氧化物,这类载体负载Pt的催化剂仍然具有出色的室温催化性能,如Pt/MnO_x-CeO_2和Pt/Fe_2O_3等.虽然Pt负载型催化剂应用前景很好,但是其成本较高,工业生产和普及受到限制.用传统金属氧化物载体制备的催化剂如Au/CeO_2,Ag/MnO_x-CeO_2和Ag/CeO_2等同样具有良好的发展前景.对于提高甲醛氧化活性来说,载体的选择至关重要.未来研究趋势可能是甲醛氧化负载型催化剂更多的会选择Ag或Au作为活性组分,而一些有潜力的传统金属氧化物载体将被使用不同的制备方法进一步改良.目前,拥有棒状、球状、孔状等特殊形貌的金属氧化物载体因为它们本身的催化活性要优于用沉淀法制备的传统金属氧化物催化剂,因此,将Ag或Au负载在这类载体上制备的催化剂具有更好的应用前景,如三维(3D)有序大孔Au/CeO_2-Co_3O_4,二维有序介孔Au/Co_3O_4-CeO_2和Au/Co_3O_4以及三维有序介孔K-Ag/Co_3O_4等.过渡金属氧化物催化剂,因成本低,资源丰富而受到关注.单一过渡金属氧化物催化剂如锰钾矿型的MnO_2纳米棒或纳米球,介孔MnO_2,Co_3O_4和Cr_2O_3等,具有较好的甲醛氧化催化活性(T_(50)和T_(100)分别小于等于110和140℃).另外,Ce,Sn,Cu和Zr等元素常常被掺杂到MnO_x和Co_3O_4中,制备成复合金属氧化物催化剂,MnO_x-CeO_2具有较好的甲醛催化活性(T_(50)100℃),因为MnO_x和CeO_2较强的相互作用改变了表面活性氧和活性相的数量.目前,复合金属氧化物催化剂氧化甲醛的报道很少.随着制备方法的改变,单一过渡金属氧化物或他们的复合氧化物催化剂可能会成为贵金属催化剂的替代品.目前,如何获得高效、低成本、低温甚至常温去除甲醛的催化剂仍然是一项重要的挑战.特殊形貌的金属氧化物催化剂如3D-Cr_2O_3,3D-Co_3O_4,MnO_2纳米球和纳米棒,在常温下完全转化甲醛仍然是个难以越过的鸿沟.将来,多种形貌的新型纳米金属氧化物及其Au或Ag负载型催化剂的制备和发展会成为一个研究趋势.这种催化剂既能被用于甲醛的催化氧化,也能被用于苯系物或其他VOCs的催化氧化.它能为机动车尾气和工业生产中VOCs产生量的削减提供技术支撑,而VOCs的去除有益于PM2.5浓度的降低和空气质量的恢复.  相似文献   

19.
催化热解废轮胎对于资源利用及环境保护具有重要意义,近年来引起人们关注.在废轮胎胶粉热解反应中加入催化剂,不仅会加速胶粉裂解速率,缩短反应时间,而且可以通过催化剂择形催化改变产物分布,从而提高目的产物衍生油的收率和性能.国内外对废轮胎催化热解已做了大量研究,以期提高衍生油中高附加值单环芳烃的含量,同时降低S,N和Cl含量,虽然已取得较大进展,但衍生油收率较低,大大降低了该技术的可行性.本文采用带搅拌器的1000 mL不锈钢反应器,在常压条件下研究了反应温度和催化剂类型对废轮胎胶粉热解反应及产物衍生油性能的影响,通过元素分析、馏程模拟和色谱-质谱等表征手段检测了衍生油的理化性能.结果表明,在废轮胎胶粉热解反应过程中,随反应温度上升,出油速率先增加后降低.至500℃时,热解衍生油收率最高达55.65 wt%,所得衍生油呈黑棕色,具有轻质油含量低、S和N含量高、粘度低和流动性好的特点,其轻质芳烃含量低,却含有大量可以转变为芳烃的脂肪烃类.因此,为了提高衍生油中轻质油和轻质芳烃收率,降低S和N含量,尽量维持较高的衍生油收率,在热解反应过程中引入少量ZSM-5,USY,β,SAPO-11和ZSM-22等常见催化剂,利用催化剂独特的孔道结构和酸分布,达到定向催化和转化的目的,提高轻质芳烃含量.同时,为了克服催化剂与胶粉难以接触进行反应的问题,在反应温度升至200℃时,维持一定时间保证胶粉发生溶胀和液化反应形成液体烃类,使得催化剂不仅能够均匀分散于液体烃中与其接触进行反应,而且有效提高了反应物料与催化剂之间传质传热效率,使得裂解反应在均相中进行,降低因传热不均匀而造成的结焦和过度裂化反应.在催化热解过程中,1.0 wt%催化剂的加入可明显缩短反应时间,在保证衍生油收率基本不变的情况下,获得的衍生油呈黄棕色,轻质油收率较高为70–75 wt%,S和N含量分别降至0.3–0.58wt%和0.78–1.0 wt%.以具有较高酸性和孔径分布的ZSM-5,USY,β和SAPO-11为催化剂时,衍生油中总芳烃含量可达到50 wt%,其中单环芳烃含量高达45 wt%.  相似文献   

20.
以SBA-15为载体,采用浸渍法制备了不同Ag含量的Ag/SBA-15,通过N2吸附-脱附、X射线衍射、扫描电子显微镜、高分辨透射电子显微镜、X射线光电子能谱和电感耦合等离子体质谱对催化剂进行了表征.将Ag/SBA-15用于苯甲醇气相选择性催化氧化合成苯甲醛,研究了反应条件对转化率和选择性的影响.结果表明,Ag/SBA-15具有均一的一维孔道结构、较厚的孔壁(3–5 nm)及较大的比表面积(411–541 m2/g),其规整纳米空间的限域作用使一定负载量的Ag以纳米尺寸均匀分散于介孔SBA-15孔道内,增加了活性组分的比表面积.亲核性氧物种从Ag到SBA-15表面的氧溢流,提高了低温下Ag/SBA-15对苯甲醇气相选择性氧化合成苯甲醛的催化性能.5.3%Ag/SBA-15中的Ag粒径为5–6 nm,且均匀分散于载体孔道中,反应温度为220°C时,苯甲醇转化率为87%,苯甲醛选择性为95%;240°C时,苯甲醇转化率和苯甲醛选择性分别高达94%和97%;并在240–300°C范围内,其催化活性和选择性保持不变,表现出了良好的温度耐受能力.催化剂经活化再生可以连续使用40 h,选择性基本保持不变.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号